

REGIONAL GROUNDWATER MONITORING REPORT WATER YEAR 2021-2022

Central and West Coast Basins Los Angeles County, California

Water Replenishment District

REGIONAL GROUNDWATER MONITORING REPORT CENTRAL BASIN AND WEST COAST BASIN LOS ANGELES COUNTY, CALIFORNIA WATER YEAR 2021 - 2022

MARCH 2023 WRD BOARD OF DIRECTORS

Joy Langford Division 1

Robert Katherman Division 2

John D. S. Allen Division 3

Division 4

Sergio Calderon Vera Robles DeWitt Division 5

Management:

Stephan Tucker, MBA, PE, PMP Rob Beste, PE

Brian Partington, PG, CHG

General Manager Assistant General Manager Manager of Hydrogeology

Prepared by:

Mat Kelliher, PG, CHG Moises Santillan, PG

Everett Ferguson, Jr., PG, CHG

Joseph Liles, PG, CHG

Benny Chong

Peter Piestrzeniewicz Andrew Thomas

Brittany Liu

Josi Jenneskens

Greg Osti

Senior Hydrogeologist **Associate Hydrogeologist** Senior Hydrogeologist

Hydrogeologist

Associate Hydrogeologist Associate Hydrogeologist Assistant Hydrogeologist Water Quality & Regulatory

Compliance Specialist

GIS Specialist

Data and Technology Services

View north toward the snow-capped San Gabriel Mountains showing a portion of the Rio Hondo spreading grounds in Pico Rivera, California. The Rio Hondo Channel flows from the top of the photo past holding basins that are nearly full with water captured from the series of Atmospheric River storms that rolled across Southern California in mid-January 2023. Photo taken January 18, 2023.

Executive Summary

The Water Replenishment District (WRD or the District) was formed in 1959 to manage the groundwater replenishment and groundwater quality activities for four million people in 43 cities that overlie the Central Basin and West Coast Basin (CBWCB) in southern Los Angeles County. WRD's service area encompasses most of the Central Basin and nearly all of the West Coast Basin. These two basins currently supply over 40 percent of the water used by the population in the region. Our mission is to provide, protect, and preserve high-quality groundwater through innovative, cost-effective and environmentally sensitive basin management practices for the benefit of residents and businesses of the Central and West Coast Basins.

This year marks the 63rd year that WRD has been monitoring the CBWCB, and this year's annual report presents the most comprehensive information to date utilizing WRD's network of aquifer-specific monitoring wells and in-depth water quality analysis. To that end, WRD has a dedicated Board and staff that engage in year-round activities to closely monitor groundwater conditions. The Regional Groundwater Monitoring Program (RGWMP) currently consists of a network of 354 monitoring wells at 63 locations throughout the District. WRD performs extensive collection, analysis, and reporting of groundwater data to ensure proper resource management. The publication of this Regional Groundwater Monitoring Report (RGWMR) is one result of those efforts. It presents information on groundwater levels and groundwater quality over the past Water Year (WY), which runs from October 1 through September 30. This current report covers WY 2021-2022. Detailed information is presented in the body of the report with a summary below:

Groundwater Levels

Across the WRD service area, water levels have increased slightly over the WY. On average water levels rose more than one foot across the District in WY 2021-2022. In both the Central and West Coast Basins, changes in water levels have been variable in WY 2021-20022. Groundwater levels have increased in some areas, decreased in other areas, and have remained unchanged elsewhere. Overall, there was a loss in

groundwater storage of 20,000 acre-feet (AF); 18,200 AF of that loss in storage occurred in the unconfined Montebello Forebay. There was a loss in storage in the Los Angeles Forebay of about 1,900 AF; the Whittier Area experienced a loss of 900 AF; and there was an increase of 1,000 AF of storage in the Central Basin Pressure Area (CBPA). No appreciable change in groundwater storage was calculated for the West Coast Basin.

Groundwater Quality

Annually, WRD collects over 600 groundwater samples from its monitoring well network and analyzes them for more than 100 water quality constituents to produce over 60,000 individual data points to help track the water quality in the CBWCB. The data from WRD's newest deep nested monitoring well, Paramount #1, is included for the first time in this report. By analyzing and reviewing water quality results on a regular basis, new and emerging water quality concerns can be identified and managed effectively.

Analysis for this report uses water quality maps and trend graphs to focus on 11 key water quality constituents to represent overall groundwater quality in the basins, including total dissolved solids (TDS), iron, manganese, chloride, nitrate, trichloroethylene (TCE), tetrachloroethylene (PCE), arsenic, perchlorate, hexavalent chromium, and 1,4-dioxane. Overall, groundwater quality in the District remains very good, with only some areas facing poor water quality from natural or anthropogenic sources that WRD staff continue to monitor closely to determine increasing or decreasing trends.

This report also complies with the state's Recycled Water Policy to present information for the adopted Salt and Nutrient Management Plan (SNMP) for the CBWCB. Through the RGWMP, 13 key WRD nested monitoring wells track salt and nutrient water quality trends throughout the District and in the most critical areas of the basins, including areas near groundwater recharge projects that utilize recycled water (i.e., the seawater intrusion barriers and the Montebello Forebay Spreading Grounds). Overall, the data show that salt and nutrient concentrations in groundwater are generally stable, and although a few individual well zones do show increasing trends, a comparable number show decreasing trends.

Future Activities

WRD continues to refine the regional understanding of groundwater occurrence, movement, and quality. Water levels will continue to be recorded using automatic dataloggers to monitor groundwater elevation differences throughout the year, and in select wells telemetry systems have recently been installed to transmit water level data remotely to the District. Conductivity sensors are also being utilized at selected nested monitoring wells to track water quality changes and supplement the automated water level data collected by WRD.

WRD also remains committed to its statutory charge to protect and preserve groundwater resources in its service area and will continue to sample groundwater for general water quality constituents including constituents of emerging concern (CECs). WRD staff will also continue to track various regulatory changes nationally as well as those within California.

WRD will continue to use the data generated by the RGWMP along with WRD's Geographic Information System (GIS) capabilities to address current and potential upcoming issues related to water quality and groundwater replenishment in its service area.

WRD staff will be working on refining the hydrogeologic conceptual model of the CBWCB to improve the framework for understanding the groundwater system and for use as a planning tool. WRD will use data from the RGWMP along with an update to the groundwater model that was developed and published by the United States Geological Survey (USGS) in 2021 as tools in its refinement of the conceptual model.

Consistent with WRD's mission to provide, protect, and preserve high quality groundwater and as required by the State's Recycled Water Policy, a SNMP is in place and will continue to be implemented. Existing and planned implementation measures are and will continue to be protective of groundwater quality and its beneficial uses.

Through the RGWMP, WRD will continue to collect CBWCB groundwater level data, track seasonal and long-term trends, and provide the data to the California Statewide Groundwater Elevation Monitoring (CASGEM) program.

Further information is available on the WRD web site at http://www.wrd.org, or by calling WRD at (562) 275-4300. WRD welcomes any comments or suggestions to this RGWMR.

TABLE OF CONTENTS

Glossary of Acronyms

Glossar	y of Acronyms Used in Report (following Table of Contents)
	Section 1
	Introduction
1.1 1.2	Background of the Regional Groundwater Monitoring Program
1.3 1.4	GIS Development and Implementation
	Section 2
	Groundwater Levels
2.1	Groundwater Elevation Contours
2.2	Changes in Groundwater Levels
2.3	Groundwater Level Hydrographs2-4
2.4	Groundwater Levels in the Montebello Forebay
2.5	Groundwater Levels in the Los Angeles Forebay2-7
2.6	Groundwater Levels in the Central Basin Pressure Area2-7
2.7	Groundwater Levels in the Whittier Area2-9
2.8	Groundwater Levels in the West Coast Basin
	Section 3
	Groundwater and Replenishment Water Quality
3.1	Quality of Groundwater
3.1.1	Total Dissolved Solids
3.1.2	Iron
3.1.3	Manganese
3.1.4	Chloride
3.1.5	Nitrate
3.1.6	Trichloroethylene (TCE)
3.1.7	Tetrachloroethylene (PCE)
3.1.8	Arsenic
3.1.9	Perchlorate
3.1.10	Hexavalent Chromium
3.1.11	1,4-Dioxane
3.2	Quality of Replenishment Water

3.2.1 Q	Quality of Imported Water	3-13
3.2.2 Q	Quality of Recycled Water	3-15
3.2.3 Q	Quality of Stormwater	3-17
3.3 M	Mineral Characteristics of Groundwater in the CBWCB	3-18
	Section 4	
	Salt and Nutrients in Groundwater	
4.1 Salt a	and Nutrient Monitoring Locations	4-2
	and Nutrient Monitoring Results and Evaluation	
4.3 Imple	lementation Measures to Manage Salt and Nutrient Loading	4-7
	Section 5	
	Summary of Findings	
Summary of	f Findings	5-1
	Section 6	
	Future Activities	
Future Activ	vities	6-1
	Section 7	
	References	
References		7-1

List of Tables

Table 1.1 Table 1.2	Construction Information for WRD Nested Monitoring Wells Construction Information for Wells Used to Prepare Figures 2.1 and 2.2
Table 2.1	Groundwater Elevations, WY 2021-2022
Table 3.1	Central Basin Water Quality Results
T 11 22	Regional Groundwater Monitoring - WY 2021-2022
Table 3.2	West Coast Basin Water Quality Results Residual Crown Avester Manitoring, WV 2021, 2022
Table 2.2	Regional Groundwater Monitoring - WY 2021-2022
Table 3.3 Table 3.4	Quality of Replenishment Water Major Minaral Water Quality Groups
1 able 5.4	Major Mineral Water Quality Groups
	List of Figures
E' 1.1	W. D. 1. 1. AD'A'AG. 'A
Figure 1.1	Water Replenishment District Service Area
Figure 1.2	Nested Wells versus Production Wells for Aquifer–Specific Data
Figure 1.3	Monitoring Well Locations
Figure 1.4	Idealized Geologic Cross Section AA'
Figure 1.5	Idealized Geologic Cross Section BB'
Figure 2.1	Groundwater Elevation Contours Fall 2022
Figure 2.2	Changes in Groundwater Elevations Fall 2021 - Fall 2022
Figure 2.3	Water Levels in WRD Key Nested Monitoring Well–Rio Hondo #1
Figure 2.4	Water Levels in WRD Key Nested Monitoring Well–Pico #2
Figure 2.5	Water Levels in WRD Key Nested Monitoring Well–Norwalk #2
Figure 2.6	Water Levels in WRD Key Nested Monitoring Well–Huntington Park #1
Figure 2.7	Water Levels in WRD Key Nested Monitoring Well–South Gate #1
Figure 2.8	Water Levels in WRD Key Nested Monitoring Well–Willowbrook #1
Figure 2.9	Water Levels in WRD Key Nested Monitoring Well–Long Beach #6
Figure 2.10	Water Levels in WRD Key Nested Monitoring Well–Seal Beach #1
Figure 2.11	Water Levels in WRD Key Nested Monitoring Well–Whittier #1
Figure 2.12	Water Levels in WRD Key Nested Monitoring Well–PM-4 Mariner
Figure 2.13	Water Levels in WRD Key Nested Monitoring Well–Carson #1
Figure 2.14	Water Levels in WRD Key Nested Monitoring Well–Manhattan Beach #1 Water Levels in WRD Key Nested Monitoring Well–Wilmington #2
Figure 2.15	· · · · · · · · · · · · · · · · · · ·
Figure 3.1	TDS Concentrations in Groundwater: WPD Nested Monitoring Wolls - Woter Year 2021 2022
Figure 2.2	WRD Nested Monitoring Wells – Water Year –2021 - 2022 TDS Concentrations from Groundwater Production Wells
Figure 3.2	Iron Concentrations in Groundwater:
Figure 3.3	
Figure 2.4	WRD Nested Monitoring Wells, Water Year –2021 - 2022 Iron Concentrations from Groundwater Production Wells
Figure 3.4	
Figure 3.5	Manganese Concentrations in Groundwater: WPD Nested Monitoring Wolls, Weter Year, 2021, 2022
Figure 2.6	WRD Nested Monitoring Wells, Water Year –2021 - 2022
Figure 3.6	Manganese Concentrations from Groundwater Production Wells Chloride Concentrations in Groundwater:
Figure 3.7	WRD Nested Monitoring Wells, Water Year –2021 - 2022
Figure 3.8	Chloride Concentrations from Groundwater Production Wells
1 12 11 12 1.11	NATIONAL NATIONAL AND CONTRACTOR OF TAXABLE VIOLATION AND A LOCAL CONTRACTOR OF TAXABLE VIOLATION AND A CONT

Figure 3.9	Nitrate Concentrations in Groundwater:			
	WRD Nested Monitoring Wells, Water Year –2021 - 2022			
Figure 3.10	Nitrate Concentrations from Groundwater Production Wells			
Figure 3.11	TCE Concentrations in Groundwater:			
	WRD Nested Monitoring Wells, Water Year –2021 - 2022			
Figure 3.12	TCE Concentrations from Groundwater Production Wells			
Figure 3.13	PCE Concentrations in Groundwater:			
	WRD Nested Monitoring Wells, Water Year –2021 - 2022			
Figure 3.14	PCE Concentrations from Groundwater Production Wells			
Figure 3.15	Arsenic Concentrations in Groundwater:			
	WRD Nested Monitoring Wells, Water Year –2021 - 2022			
Figure 3.16	Arsenic Concentrations from Groundwater Production Wells			
Figure 3.17	Perchlorate Concentrations in Groundwater:			
	WRD Nested Monitoring Wells, Water Year –2021 - 2022			
Figure 3.18	Perchlorate Concentrations from Groundwater Production Wells			
Figure 3.19	Hexavalent Chromium Concentrations in Groundwater:			
	WRD Nested Monitoring Wells, Water Year –2021 - 2022			
Figure 3.20	Hexavalent Chromium Concentrations from Groundwater Production Wells			
Figure 3.21	1,4-Dioxane Concentrations in Groundwater:			
	WRD Nested Monitoring Wells, Water Year –2021 - 2022			
Figure 3.22	1,4-Dioxane Concentrations from Groundwater Production Wells			
Figure 4.1	TDS and Chloride in WRD Key Nested Monitoring Well–Rio Hondo #1			
Figure 4.2	TDS and Chloride in WRD Key Nested Monitoring Well–Pico #2			
Figure 4.3	TDS and Chloride in WRD Key Nested Monitoring Well–Norwalk #2			
Figure 4.4	TDS and Chloride in WRD Key Nested Monitoring Well-Huntington Park #1			
Figure 4.5	TDS and Chloride in WRD Key Nested Monitoring Well–South Gate #1			
Figure 4.6	TDS and Chloride in WRD Key Nested Monitoring Well-Willowbrook #1			
Figure 4.7	TDS and Chloride in WRD Key Nested Monitoring Well-Long Beach #6			
Figure 4.8	TDS and Chloride in WRD Key Nested Monitoring Well-Seal Beach #1			
Figure 4.9	TDS and Chloride in WRD Key Nested Monitoring Well-Whittier #1			
Figure 4.10	TDS and Chloride in WRD Key Nested Monitoring Well-PM-4 Mariner			
Figure 4.11	TDS and Chloride in WRD Key Nested Monitoring Well–Carson #1			
Figure 4.12	TDS and Chloride in WRD Key Nested Monitoring Well–Manhattan Beach #1			
Figure 4.13	TDS and Chloride in WRD Key Nested Monitoring Well–Wilmington #2			

GLOSSARY OF ACRONYMS

AF acre-feet

ARC Albert Robles Center for Water Recycling and Environmental

Learning

AWTF Advanced Water Treatment Facility

BGS below ground surface

CASGEM California Statewide Groundwater Elevation Monitoring

CECs chemicals of emerging concern

CBWCB Central Basin and West Coast Basin

CBPA Central Basin Pressure Area

DDW State Water Resources Control Board, Division of Drinking Water

DME Designated Monitoring Entity

DWR California Department of Water Resources

ELWRF Edward C. Little Water Recycling Facility

ESR Engineering Survey and Report

GIS Geographic Information System
GPS Global Positioning System

GRIP Groundwater Reliability Improvement Program

LACSD Los Angeles County Sanitation Districts
LACPW Los Angeles County Public Works
LAX Los Angeles International Airport

MCL Primary Maximum Contaminant Level

mg/L milligram per liter $\mu g/L$ microgram per liter MSL mean sea level

MWD Metropolitan Water District of Southern California

NAVD88 North American Vertical Datum of 1988

Notification Level

NDMA N-nitrosodimethylamine ng/L nanogram per liter

NL

GLOSSARY OF ACRONYMS (continued)

OEHHA Office of Environmental Health Hazard Assessment

PCE tetrachloroethylene

PDF Portable Document Format

PFAS perfluoroalkyl and polyfluoroalkyl substances

PFOA perfluorooctanoic acid PFOS perfluorooctane sulfonate

PHG Public Health Goal

RGWMP Regional Groundwater Monitoring Program RGWMR Regional Groundwater Monitoring Report

RL Response Level

SMCL Secondary Maximum Contaminant Level
SNMP Salt and Nutrient Management Plan
SWRCB State Water Resources Control Board

TCE trichloroethylene TDS total dissolved solids

TIWRP Terminal Island Water Reclamation Plant

UCMR Unregulated Contaminant Monitoring Rule
USEPA United States Environmental Protection Agency

USGS United States Geological Survey

WBMWD West Basin Municipal Water District

WQO Water Quality Objective
WRD Water Replenishment District
WRP Water Reclamation Plant

WY Water Year

SECTION 1 INTRODUCTION

The Water Replenishment District (WRD or the District) manages groundwater replenishment and water quality activities for the Central Basin and West Coast Basin (CBWCB) in southern Los Angeles County (Figure 1.1). WRD's service area encompasses most of the Central Basin and nearly all of the West Coast Basin. Our mission is to provide, protect, and preserve high-quality groundwater through innovative, cost-effective, and environmentally sensitive basin management practices for the benefit of residents and businesses of the Central and West Coast Basins.

As part of accomplishing its mission, WRD maintains a thorough and current understanding of groundwater conditions in its service area and strives to predict and prepare for future conditions. This is achieved through groundwater monitoring, modeling, and planning, which provide the necessary information to determine the "health" of the basins. This information in turn provides WRD, the groundwater pumpers in WRD's service area, other interested stakeholders, and the public with the knowledge necessary for responsible water resources planning and management. Each year WRD compiles the most recently collected information into a Regional Groundwater Monitoring Report (RGWMR) that presents the most current understanding of conditions in the basins; the RGWMR is just one of the efforts by WRD to fulfill its mission.

1.1 BACKGROUND OF THE REGIONAL GROUNDWATER MONITORING PROGRAM

Since its formation in 1959, WRD has been actively involved in groundwater replenishment, water quality monitoring, contamination prevention, data management, and data publication. Historical over-pumping of the CBWCB caused overdraft, seawater intrusion, and other groundwater management problems related to supply and quality. Adjudication of the basins in the early 1960s set a limit on allowable groundwater extractions in order to control the over-pumping. Concurrent with adjudication, WRD was

formed to address issues of groundwater recharge and groundwater quality. Following its inception, WRD implemented the Regional Groundwater Monitoring Program (RGWMP) as a program designed to track groundwater levels and groundwater quality in the WRD service area in the effort to ensure the sustainability of groundwater as a reliable resource.

Prior to 1995, WRD relied heavily upon groundwater data collected, interpreted, and presented by other entities such as the Los Angeles County Public Works (LACPW), the California Department of Water Resources (DWR), and the private sector for understanding basin conditions. However, these data were collected primarily from production wells, which are typically screened across multiple aquifers to maximize water inflow. The result is a mixing of waters from different aquifers into a single well casing, causing an averaging of water levels and water quality.

In order to obtain more accurate data for specific aquifers from which to infer localized water level and water quality conditions, depth-specific (nested) monitoring wells that tap discrete aquifer zones are necessary. **Figure 1.2** illustrates the capabilities of nested monitoring wells to assess individual aquifers compared to typical production wells.

Data for the RGWMRs are provided for a Water Year (WY), which occurs from October 1 to September 30. During WY 1994-95, WRD and the United States Geological Survey (USGS) began a cooperative study to improve the understanding of the geohydrology and geochemistry of the CBWCB. The initial study was documented in USGS Water Resources Investigations Report 03-4065, *Geohydrology, Geochemistry and Ground-Water Simulation-Optimization of the Central Basin and West Coast Basin, Los Angeles County, California* (Reichard et al., 2003). The study provides the nucleus of WRD's ongoing RGWMP. In addition to compiling existing available data, that study recognized that the sampling of production wells did not adequately characterize the layered multiple aquifer systems of the CBWCB. The study focused on new data collection through drilling and construction of nested groundwater monitoring wells and conducting depth-specific groundwater monitoring.

Figure 1.3 is a District map showing the locations of wells in WRD's nested monitoring well network that are used in the RGWMP. Currently, there are 354 wells at 63 locations; a few of these wells are used exclusively to monitor groundwater elevations, but most are used to monitor both groundwater elevations and water quality within the WRD service area. A listing and well construction details for the WRD nested wells used in the RGWMP are presented in **Table 1.1**. Listings and well construction details for other wells used to prepare the groundwater elevation contour and groundwater elevation change maps that are included in this report are presented in **Table 1.2**.

An Annual Report on the Results of Water Quality Monitoring (Annual Report) was published by WRD each year for WYs 1972-73 through 1994-95 and was based on a basinwide monitoring program outlined in the Report on Program of Water Quality Monitoring (Bookman-Edmonston Engineering, Inc., January 1973). The latter report recommended a substantial expansion of the then-existing program, particularly the development of a detailed and intensive program for the monitoring of groundwater quality in the Montebello Forebay. The RGWMP was designed to serve as an expanded, more representative basinwide monitoring program for the CBWCB. WRD's RGWMR is published annually in lieu of the previous Annual Reports.

On November 4, 2009, the State Legislature amended the Water Code with SBx7-6, mandating a statewide groundwater elevation monitoring program to track seasonal and long-term trends in California's groundwater basins. In accordance with this amendment, DWR developed the California Statewide Groundwater Elevation Monitoring (CASGEM) program. In October 2011, WRD was assigned as the Designated Monitoring Entity (DME) responsible for collecting and reporting CBWCB groundwater level data to CASGEM. Through the RGWMP, WRD collects groundwater level data from within its service area, tracks seasonal and long-term trends and provides that data to the CASGEM program.

Beginning in WY 2018-19 and culminating in WY 2019-2020, WRD completed a District-wide assessment for the presence of per- and polyfluoroalkyl substance (PFAS)

constituents, including perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), in WRD nested monitoring wells and CBWCB production wells. Data collected from the two-year PFAS assessment were included in the WY 2019-2020 RGWMR published in March 2021, as were water quality maps illustrating the occurrence of PFOS and PFOA across the District.

1.2 CONCEPTUAL HYDROGEOLOGIC MODEL

As described above, the RGWMP has changed the focus of groundwater monitoring efforts in the WRD service area from production wells with averaged groundwater level and groundwater quality information, to a layered multiple aquifer system with individual zones of groundwater quality and groundwater levels. WRD views each aquifer as a significant component of the groundwater system and recognizes the importance of the interrelationships between aquifers. The most accepted hydrogeologic description of the basins and the names of water-bearing zones are provided in DWR document entitled Bulletin No. 104: Planned Utilization of the Ground Water Basins of the Coastal Plain of Los Angeles County, Appendix A–Ground Water Geology (DWR, 1961). WRD generally follows the naming conventions defined in Bulletin 104; however, in some cases WRD's in-house interpretation has resulted in aquifer classifications that differ from those predicted by that report. During WY 2017-18, WRD updated its interpretation of the aquifer classifications assigned to each well so that they more closely match those of Bulletin 104. This resulted in changes to designations at some wells from those that were previously used and published by WRD. Tables 1.1 and 2.1 list the specific aquifer or formation assigned to each well used in the RGWMP and indicate whether that designation follows Bulletin 104 or is the result of WRD's most current interpretation.

The locations of idealized geologic cross-sections A-A' and B-B' through the WRD service area are shown on **Figure 1.3**. These cross-sections are presented on **Figures 1.4** and **1.5**, respectively. These cross-sections are modified versions of cross-sections presented in Bulletin 104 and illustrate a simplified aquifer system in the CBWCB. The main potable production aquifers described in Bulletin 104 are shown, including the

deeper Lynwood, Silverado, and Sunnyside aquifers of the lower Pleistocene San Pedro Formation. Other shallower aquifers, which locally produce potable water, include the Gage and Gardena aquifers of the upper Pleistocene Lakewood Formation. Also shown on the geologic sections are the aquitards separating aquifers. Throughout this report the aquifers shown on the geologic sections are referred to as discrete groundwater zones. Many references are made to the Silverado Aquifer, typically thought of as the main producing aquifer in the CBWCB; however, substantial pumping can come from the Lynwood and Sunnyside aquifers as well.

1.3 GIS DEVELOPMENT AND IMPLEMENTATION

WRD uses a Geographic Information System (GIS) as a tool for groundwater management in its service area. Much of the GIS data was compiled during the WRD/USGS cooperative study described above in Section 1.1. The GIS links spatially related information (e.g., well locations, geologic features, cultural features, and contaminated sites) to data on well production, water quality, water levels, and replenishment amounts. WRD uses industry standard Esri ArcGIS® software for data analysis and preparation of spatially related information (maps and graphics tied to data).

WRD utilizes Global Positioning System (GPS) technology to determine and document the locations of basinwide production wells, nested monitoring wells, and other geographic features for use in the GIS database. During WY 2015-16, WRD updated and modernized its database so that a consistent reference surface datum is used when describing the mean sea level (MSL) elevation at each monitoring well. This update required a re-survey of the measurement reference point at each of WRD's wells relative to the North American Vertical Datum of 1988 (NAVD88) reference plane. This update resulted in adjustment for some of the "reference point elevations" that were previously used and published by WRD. Current NAVD88 reference point elevations are listed in **Table 2.1**.

WRD is constantly updating the GIS with new data and newly acquired archives of data acquired by staff or provided by pumpers and other agencies. The GIS is a primary tool

for WRD and other water-related agencies to accurately track current and past use of groundwater, track groundwater quality, and project future water demands, thus allowing improved management of the basins.

In early 2003, WRD completed the development of its internet-based GIS and Interactive Well Search Tool, which was made available to the public for access to CBWCB groundwater information. In 2018, a major upgrade to this site was completed to enhance its capabilities, and in November 2019 further enhancements to the site were launched. WRD's internet-based GIS can be accessed through our GIS website at http://gis.wrd.org. The website provides the public with access to much of the water level and water quality data contained in this report. The well information on the website can be accessed through interactive maps or text searches, and the results can be displayed in both tabular and graphical formats.

1.4 SCOPE OF REPORT

This report updates information on groundwater conditions in the WRD service area for WY 2021-2022 and discusses the status of the RGWMP. Section 1 provides an overview of the WRD and its RGWMP. Section 2 discusses district-wide groundwater levels for WY 2021-2022. Section 3 presents water quality data for the WRD nested monitoring wells, basinwide production wells, and replenishment water. Section 4 summarizes salt and nutrient management in the CBWCB and presents water quality trends for total dissolved solids (TDS) and chloride. Section 5 summarizes findings from the evaluation of data in this report. Section 6 presents future regional groundwater monitoring and related activities. Section 7 lists the references used in this report. Tables and figures are presented in separate sections at the end of the report. This current WY 2021-2022 RGWMR, along with previously published reports for past WYs, can be viewed online and downloaded in Portable Document Format (PDF) form from the WRD website at http://www.wrd.org.

SECTION 2 GROUNDWATER LEVELS

Groundwater levels are a direct indication of the amount of groundwater in the basins. Groundwater levels can identify areas of recharge and discharge from the basins. Differences in groundwater levels suggest which way groundwater is moving so that recharge water or contaminants can be tracked. WRD uses groundwater levels to determine when additional replenishment water is required and to calculate groundwater storage changes. Groundwater levels can also be used to identify possible source areas and pathways for seawater intrusion, and to demonstrate the effectiveness of seawater barrier injection wells. Groundwater levels are dependent on both regional precipitation and on the amount of water extracted by pumping.

WRD tracks groundwater levels throughout the year by measuring the depth to water in monitoring wells and production wells located throughout its service area. Groundwater elevations are calculated by comparing depth to water measurements to the MSL elevation at the reference measurement point of each well. **Table 2.1** presents manual groundwater level measurements collected from the District's nested monitoring wells during WY 2021-2022. In order to capture the daily and seasonal variations in water levels, WRD has installed automatic data-logging equipment in most of the nested monitoring wells to collect water levels more frequently than practical for manual measurements. Recent improvements in cellular telemetry equipment have allowed WRD to equip 51 datalogger-equipped individual wells at 25 nested well sites with telemetry systems that allow near real-time water level data to be remotely transmitted to the District. WRD also obtains water level data from cooperating entities such as pumpers, DWR, and LACPW who measure and collect water levels from their own wells. These data are entered into WRD's GIS water level database for archiving and analysis.

From the water level database, a groundwater elevation contour map, change in groundwater elevation map, and groundwater elevation hydrographs for selected wells

were prepared to aid in analysis and illustrate the current and historical groundwater conditions in the basins. These are presented and explained in the following sections.

2.1 GROUNDWATER ELEVATION CONTOURS

A contour map showing the groundwater elevations measured across the WRD service area in the deeper, main producing aquifers during the fall of 2022 is presented in **Figure 2.1**. Specific well zones used to develop the groundwater contour map are identified on **Table 2.1**. The fall 2022 Contour Map shows that in the Central Basin water levels range from highs of nearly 160 feet above MSL to lows deeper than 80 feet below MSL. The highest water levels are in the Montebello Forebay; water levels decrease to the south and west towards the Long Beach area, the Newport-Inglewood Uplift, and the Los Angeles Forebay.

In the West Coast Basin, water levels range from highs of nearly 10 feet above MSL to lows of more than 40 feet below MSL. The highest water levels occur near the West Coast Basin Seawater Intrusion Barrier: they decrease to the east where they are generally at their lowest elevations in the City of Gardena near the Charnock Fault and in the City of Carson slightly seaward of the Newport-Inglewood Uplift. The Charnock Fault and Newport-Inglewood Uplift are geologic structural features that partially restrict groundwater flow.

2.2 CHANGES IN GROUNDWATER LEVELS

Figure 2.2 is a groundwater level change map that illustrates the difference between groundwater levels measured in fall 2021 and those measured in fall 2022. Specific well zones used to develop the groundwater level change map are identified on **Table 2.1**. During WY 2021-2022, changes in groundwater levels across the WRD service area have generally increased, although in some areas they have decreased, and in others they have remained unchanged.

In the Central Basin, changes in groundwater levels were variable in WY 2021-2022. Across the unconfined Montebello Forebay water levels have generally decreased; they are at their lowest levels in the north in and around the spreading grounds where they are more than 11 feet lower than they were in the previous year. The decrease in water levels is less pronounced moving away from the spreading grounds; along the eastern reach of the Forebay they range from more than 7 feet lower in the north to almost two feet lower in the south, and along the western reach they are about one foot lower than they were in fall 2021. Moving south away from the spreading grounds water levels gradually increase, enough so that along the southern reach of the Montebello Forebay they are more than one foot higher than they were in fall 2021. Across the unconfined Los Angeles Forebay, water levels are either unchanged, or slightly lower than those measured in fall 2021. In the western portion of the Los Angeles Forebay water levels are as much as three feet lower than were measured in fall 2021, while those in the eastern and southern-central portions are generally unchanged from the previous year. In the Whittier Area water levels gradually increase from west to east; in the west they are as much as seven feet lower than, and in the east they are essentially unchanged from, water levels measured in fall 2021.

Water levels generally increased across most of the rest of the Central Basin in WY 2021-2022. In the Central Basin Pressure Area (CBPA) downgradient from both of the Forebays and the Whittier Area, water levels steadily increase towards the south; they are at their highest along the Newport-Inglewood Uplift near the eastern border of the CBPA where they are as much 17 feet higher than they were in fall 2021. In the northwestern portion of the CBPA immediately west of the Los Angeles Forebay water levels are as much as four feet lower than they were in fall 2021 but moving south from there along the Newport-Inglewood Uplift they steadily increase. In the area between the Los Angeles and Montebello Forebays water levels are essentially unchanged from those measured in fall 2021.

In the West Coast Basin, changes in water levels were somewhat variable in WY 2021-2022. In the northeast portion of the basin between the Newport-Inglewood Uplift and the Charnock Fault water levels have increased and are as much as 7 feet higher than they were

in fall 2021. In the southern portion of the basin near the Newport-Inglewood Uplift and southern coastal area, as well as in the vicinity of the northern portion of the West Coast Barrier Project near the cities of Hermosa Beach-Redonda Beach-El Segundo, water levels have decreased slightly and are between one and five feet lower than they were in fall 2021. In much of the Carson-Torrance-Lawndale and Los Angeles International Airport (LAX) areas, water levels are relatively unchanged from those measured in fall 2021.

District-wide, groundwater levels increased an average of more than one foot in WY 2021-2022. Water levels decreased across much of the northern portion of the Central Basin; in the Montebello Forebay region water levels decreased an average of more than three feet, in the Los Angeles Forebay region they decreased an average of more than one foot, and in the Whittier Area they decreased by an average of more than two feet. In, the CBPA water levels increased by an average of more than four feet. In the West Coast Basin, water levels decreased by an average of less than one-half of one foot.

There was an overall loss of 20,000 acre-feet (AF) in groundwater storage across the District in WY 2021-2022, nearly all of which occurred in the Central Basin. In the unconfined Montebello Forebay, there was a loss in groundwater storage of 18,200 AF, in the Los Angeles Forebay a loss of 1,900 AF, in the Whittier Area a loss of 900 AF, and in the CBPA a gain of 1,000 AF. In the West Coast Basin there was no appreciable change in groundwater storage in WY 2021-2022.

2.3 GROUNDWATER LEVEL HYDROGRAPHS

WRD relies on hydrographs to track the changes in water levels in wells over time. Hydrographs reveal the seasonal fluctuations of water levels caused by variations in natural and artificial recharge, and the effects of pumping and other basin discharge. Historical hydrographs of water level data going back to the 1930s and 1940s in the Montebello Forebay, Los Angeles Forebay, CBPA, and West Coast Basin are presented in the annual WRD Engineering Survey and Report (ESR). In general, the hydrographs show that in the Central Basin, water levels were in steep decline through the 1930s and into the

late 1950s as a result of excessive pumping (overdraft). Initiation of groundwater management policies in the late 1950s and early 1960s including formation of the WRD, adjudication of the basins, and installation of seawater barrier wells are evident on the hydrographs in the form of a distinct reversal in water level decline followed by a steady increase through the 1960s. Despite repeated fluctuation between periods of decreasing and increasing trends, water levels in the Central Basin have generally been relatively stable since the 1960s, although over the past several years they have been in decline. In the West Coast Basin, the hydrographs show a similar steep decline in water levels in the 1930s through the 1950s as a result of overdraft, followed by stabilization and steady increase through the 1960s that continues to the present day. ESR hydrographs are not presented in this RGWMR; however, they can be viewed in the ESR reports online and downloaded from the WRD website at http://www.wrd.org.

Hydrographs for WRD nested monitoring wells that plot water level measurements from individual aquifer zones against time provide WRD with a graphical method to observe changes in water level and can aid in identifying current and historic trends in aquifer conditions. The data for these annual hydrographs are collected from WRD's network of nested monitoring wells. Figures 2.3 through 2.15 are hydrographs of 13 key WRD nested monitoring wells, including three in the Montebello Forebay, one in the Los Angeles Forebay, four in the CBPA, one in the Whittier Area, and four in the West Coast Basin. The 13 key nested monitoring well locations are shown on **Figure 1.3**. These hydrographs illustrate that there can be distinct groundwater elevation differences, up to 90 feet, between adjacent aquifers at a single nested well location. The differences in elevation are influenced by variable discharge (i.e., pumping from wells), recharge (i.e., injection, percolation, or underflow) and the degree of hydraulic communication between aquifers. These hydrographs are particularly useful in identifying the zones that are in the main flow system and the zones that show the greatest depth and seasonal fluctuations in groundwater levels during the WY. A discussion of the hydrographs shown on Figures 2.3 through 2.15 is presented in the following sections.

2.4 GROUNDWATER LEVELS IN THE MONTEBELLO FOREBAY

Figure 2.3 is a hydrograph for WRD's Rio Hondo #1 key nested monitoring well located in the Montebello Forebay at the Rio Hondo Spreading Grounds. There are six individual wells (zones) that are screened, from shallowest to deepest, in the Gardena, Hollydale, Silverado, and Sunnyside (two zones) Aquifers, and the Pico Formation, with depths ranging from 140 to 1,130 feet below ground surface (BGS). Because this well is located in the Montebello Forebay, where the aquifers are in general hydraulic communication with each other, water level responses in each of the aquifers are similar. Seasonal highs and lows are in response to local recharge and pumping. Groundwater elevations are lowest in Zone 4, the Silverado Aquifer, suggesting that this aquifer is the most heavily pumped in the area. Water levels in Zone 4 decreased slightly more than four feet this year compared to the previous WY.

Figure 2.4 is a hydrograph for WRD's Pico #2 key nested monitoring well located in the Montebello Forebay adjacent to the San Gabriel River and just south of the San Gabriel River Spreading Grounds. There are six individual wells (zones) that are screened, from shallowest to deepest, in the Gaspur/Gage, Lynwood, Silverado, and Sunnyside (three deepest zones) Aquifers, with depths ranging from 100 to 1,200 feet BGS. Groundwater elevations are lowest in Zones 1, 2, and 3, all of which are screened in the Sunnyside Aquifer, suggesting that the Sunnyside Aquifer is the most heavily pumped in this area. At the end of WY 2021-2022, water levels in the three Sunnyside Zones were between three and five feet lower than they were at the end of the previous WY, similar to levels last observed at this location in the fall of 2018.

Figure 2.5 is a hydrograph for WRD's Norwalk #2 key nested monitoring well located in the Montebello Forebay, 3.5 miles south of the San Gabriel River Spreading Grounds. There are six individual wells (zones) that are screened in the following aquifers (from shallowest to deepest): Gardena, Silverado, and Sunnyside (two zones) Aquifers, and the Pico Formation (two deepest zones), with depths ranging from 236 to 1,480 feet BGS. Norwalk #2 is the third key well representing the Montebello Forebay and is at the southern

margin of the Forebay where it transitions into the CBPA. Unlike Rio Hondo #1 and Pico #2, water level responses to seasonal discharge and recharge influences are less pronounced at Norwalk #2, with seasonal swings of around 20 feet compared to the greater than 30-foot seasonal swings observed at Rio Hondo #1 and Pico #2. Groundwater elevations are deepest in Zones 3 and 4, which are both screened in the Sunnyside Aquifer, suggesting that this aquifer is the most heavily pumped in the area. Water levels in Zones 3 and 4 increased more than three feet from those measured in the fall of 2021.

2.5 GROUNDWATER LEVELS IN THE LOS ANGELES FOREBAY

Figure 2.6 is a hydrograph for WRD's Huntington Park #1 key nested monitoring well located in the Los Angeles Forebay near the intersection of Slauson Avenue and Alameda Street. There are five individual wells (zones) that are screened in the following aquifers (from shallowest to deepest): Gaspur, Gage, Hollydale, Lynwood, and Silverado, with depths ranging from 114 to 910 feet BGS. Only four of the five zones are shown on the hydrograph because the shallowest well (screened from 114 to 134 feet BGS in the Gaspur Aquifer) is dry. There is a large separation in water levels between Zone 4 and the three deeper zones, suggesting the presence of a low permeability aquitard(s) above Zone 3 that hydraulically isolates the Gage Aquifer from the deeper aquifers. Water levels in the deepest two zones, screened within the Lynwood and Silverado Aquifers, are generally similar and both decreased slightly in WY 2021-2022 compared to the previous WY. Unlike the fluctuations between increasing and decreasing water levels typically observed in the Montebello Forebay, water levels in the Los Angeles Forebay have remained relatively stable over the past 22 years.

2.6 GROUNDWATER LEVELS IN THE CENTRAL BASIN PRESSURE AREA

Figure 2.7 is a hydrograph for WRD's South Gate #1 key nested monitoring well, which is located in the north-central portion of the CBPA, just outside the Montebello and Los Angeles Forebays. There are five individual wells (zones) that are screened, from shallowest to deepest, in the Exposition, Lynwood, Silverado, and Sunnyside (two

deepest zones) Aquifers, with depths ranging from 220 to 1,460 feet BGS. Water levels in Zones 1 through 4 generally behave similarly in response to seasonal discharge and recharge. The upper Zone 5 has much shallower water levels, shows little seasonal response, and is isolated from the aquifers below by an aquitard, resulting in the observed hydraulic separation. Water levels in the deepest three aquifers at South Gate #1 increased by more than two feet in WY 2021-2022 compared to the previous WY. Water levels are relatively unchanged in Zone 5 from the previous WY but have steadily decreased by more than 20 feet over the past 15 years.

Figure 2.8 is a hydrograph for WRD's Willowbrook #1 key nested monitoring well, which is located in the CBPA, about seven miles down-gradient of the Montebello Forebay. There are four individual wells (zones) that are screened, from shallowest to deepest, in the Gage, Lynwood, Silverado, and Sunnyside Aquifers, with depths ranging from 200 to 905 feet BGS. Zone 1 is screened in the deepest responding aquifer. Water levels in the upper three zones are typically shallower than those observed in Zone 1. The differences in water levels between Zones 1 and 2, and between Zones 2 and 3, indicate hydraulic separation, and thus suggest the presence of aquitards that separate these zones from one another. Water levels in Zones 3 and 4 track very closely which indicates there is little hydraulic separation between them. Water levels in Zone 1 increased nearly one foot from those measured in fall 2021, and water levels in the overlying shallower zones have increased by slightly more than one foot. Water levels in Willowbrook #1 have generally declined over the past 23 years.

Figure 2.9 is a hydrograph for key nested monitoring well Long Beach #6 located in the southern portion of the CBPA. There are six individual wells (zones) that are screened, from shallowest to deepest, in the Gage, Lynwood, Silverado, and Sunnyside (two zones) Aquifers, and the Pico Formation, with depths ranging from 220 to 1,510 feet BGS. Because this portion of the CBPA has multiple confined aquifers separated by substantial aquitards, and experiences heavy local seasonal pumping cycles, water level fluctuations can be larger here than in other areas. For example, water levels in Zones 4 and 5 are the deepest responders; they are screened in the Silverado and Lynwood Aquifers, they can

rise and fall by more than 100 feet through typical seasonal cycles, and have been recorded historically at elevations ranging from highs near sea level to lows deeper than 120 feet below sea level. Water levels in the other zones also show significant seasonal variation. **Figure 2.9** shows that water levels in all six zones are as much as ten feet higher than they were in the fall of 2021.

Figure 2.10 is a hydrograph for key nested monitoring well Seal Beach #1, which is included as a key nested monitoring well for the CBPA due to its proximity inland of the Alamitos Gap Seawater Intrusion Barrier Recycled Water Project. There are seven individual wells (zones) that are screened, from shallowest to deepest, in the Artesia, Gage, Lynwood, Silverado, and Sunnyside (three deepest zones) Aquifers, with depths ranging from 60 to 1,365 feet BGS. Zone 4, screened in the Silverado Aquifer, is the deepest responding unit at Seal Beach #1. Zone 5 responds similarly to Zone 4 but draws down less during heavily pumped periods. Zones 1, 2, and 3 overlay on the hydrograph and water levels within them have increased by more than six feet over WY 2021-2022. Water levels in Zone 4 increased by nearly 17 feet, and in Zone 5 by seven feet during WY 2021-2022. Water levels within Zones 6 and 7 have increased by between one and four feet over the WY; here they show a smaller seasonal response than the five deeper zones, with groundwater elevations at or slightly below sea level, suggesting partial isolation from the lower aquifer systems.

2.7 GROUNDWATER LEVELS IN THE WHITTIER AREA

The Whittier Area of the Central Basin extends from the Puente Hills south and southwest to the Santa Fe Springs-Coyote Hills uplift. The western boundary is an arbitrary line separating the Whittier Area from the Montebello Forebay and the eastern boundary is the Orange County line. **Figure 2.11** is a hydrograph from WRD's Whittier #1 key nested monitoring well located in the eastern part of the Whittier Area. There are five individual wells (zones) that are screened, from shallowest to deepest, in the Jefferson, Silverado, and Sunnyside Aquifers, and the Pico Formation (two deepest zones), with depths ranging from 200 to 1,200 feet BGS. Groundwater levels in the Whittier Area do not

show a seasonal fluctuation typical of other areas of the Central Basin and adjacent Montebello Forebay Area, which suggests limited groundwater discharge and recharge. Zones 1 through 4 have similar groundwater elevations and have tracked very closely over time while the Zone 5 groundwater elevation is more than 80 feet higher than elevations in the deeper zones suggesting substantial isolation by an aquitard(s). The Whittier #1 hydrograph indicates that groundwater levels in the Whittier Area have remained relatively unchanged over WY 2021-2022 and have decreased about 12 feet over the past 22 years.

2.8 GROUNDWATER LEVELS IN THE WEST COAST BASIN

Figure 2.12 is a hydrograph for WRD's PM-4 Mariner key nested monitoring well, which is located in the City of Torrance, in the coastal area inland from the West Coast Basin Seawater Intrusion Barrier. There are four individual wells (zones) that are screened, from shallowest to deepest, in the Gardena, Lynwood, Silverado, and Sunnyside Aquifers, with depths ranging from 200 to 710 feet BGS. All four zones respond similarly to seasonal fluctuations. Historically, water levels in Zone 1 (Sunnyside) have been the deepest and were consistently separated from Zone 2 (Silverado) water levels by one or two feet; however, since about April 2020 water levels within the two zones have converged and now fluctuate above and below one another. In Fall 2022 water levels in Zone 2 were observed to be more than one foot deeper than those in Zone 1. Water levels in both zones have decreased by less than one foot over WY 2021-2022. Water levels in Zones 3 and 4 (Lynwood and Gardena) are both about two feet higher than those in Zones 1 and 2 and are essentially unchanged from those measured in the fall of 2021.

Figure 2.13 is a hydrograph for WRD's Carson #1 key nested monitoring well, which is located in the inland region of the West Coast Basin. There are four individual wells (zones) that are screened, from shallowest to deepest, in the Gage, Lynwood, and Silverado (two deepest zones) Aquifers, with depths ranging from 250 to 1,010 feet BGS. Water levels in Zone 1 track very similar to Zone 2 throughout the year and are the deep responding aquifers at this location. Zone 3 tracks similar to Zone 4. Groundwater

elevations currently differ by about 30 feet between the upper two and lower two zones, which suggests the presence of a low permeability aquitard(s) between them that hydraulically isolate the shallow aquifers from the deeper ones. Water levels in Zones 1 and 2 have decreased more than five feet over WY 2021-2022 but have generally increased by about 30 feet over the past 23 years.

Figure 2.14 is a hydrograph for WRD's Manhattan Beach #1 key nested monitoring well for the West Coast Basin located one half mile inland of the West Coast Basin Seawater Intrusion Barrier. There are seven individual wells (zones) at Manhattan Beach #1 that are screened, from shallowest to deepest, in the Gage, Silverado, and Sunnyside (two zones) Aquifers, and the Pico Formation (three deepest zones), with depths ranging from 180 to 1,990 feet BGS. Zone 3 is screened in the Pico Formation and has the deepest groundwater levels, as much as 30 feet lower than Zones 1, 2, 4, and 5 which all generally track together. Water levels in Zones 6 and 7 track together and are about six to eight feet higher than those in Zones 1, 2, 4, and 5. Seasonal fluctuations are not pronounced at the Manhattan Beach #1 location and groundwater levels did not change significantly over the previous WY. Water levels in Zone 3 have increased less than one foot over the previous WY but nearly 13 feet since it was installed in WY 2010-11.

Figure 2.15 is a hydrograph for WRD's Wilmington #2 key nested monitoring well, which is located in the West Coast Basin, inland of the Dominguez Gap Seawater Intrusion Barrier. There are five individual wells (zones) that are screened, from shallowest to deepest, in the Gage, Lynwood, Silverado (two zones), and Sunnyside Aquifers with depths ranging from 120 to 970 feet BGS. Water levels in Zones 1 through 4 are generally deeper and behave similarly in response to seasonal influences. The upper Zone 5 has shallower water levels and shows less seasonal change than the deeper zones suggesting hydraulic separation from them. Wilmington #2 water levels decreased between one and three feet in WY 2021-2022 compared to the previous WY, but over the past 24 years they have increased by as much as 25 feet.

SECTION 3

GROUNDWATER AND REPLENISHMENT WATER QUALITY

This section discusses the vertical and horizontal distribution of water quality constituents in WRD's service area based on data from WRD's nested monitoring wells, purveyors' production wells, and source waters used for CBWCB groundwater replenishment. Regional groundwater quality maps included herein depict constituents of interest to WRD and District stakeholders in the nested monitoring wells and production wells where water quality data is available.

Comparisons of water quality results to various regulatory standards are made throughout A brief discussion of the regulatory standards used in the report this section. follows. A Primary Maximum Contaminant Level (MCL) is an enforceable drinking water standard that the California Environmental Protection Agency, State Water Resources Control Board, Division of Drinking Water (DDW) establishes after health effects, risk assessment, detection capability, treatability, and economic feasibility are considered. A Secondary Maximum Contaminant Level (SMCL) is established for constituents that impact aesthetics of the water, such as taste, odor, and color, but do not impact health. A Public Health Goal (PHG) is an advisory level that is developed by the Office of Environmental Health Hazard Assessment (OEHHA) after a thorough review of health effects and risk assessment studies. A Notification Level (NL) and Response Level (RL) are non-enforceable health-based advisory levels established by the DDW based on preliminary reviews of health effects studies for which enforceable levels have not been established. NLs and RLs replaced State Action Levels effective January 1, 2005 per California Health and Safety Code Section 116455. It should be noted that constituents with NLs often are considered unregulated contaminants for which additional monitoring may be required to determine the extent of exposure before MCLs and/or PHGs are established.

3.1 QUALITY OF GROUNDWATER

The focus of this section is groundwater quality in samples collected from WRD nested monitoring wells and purveyors' production wells. Section 1 of this report described the value of data from aquifer-specific nested monitoring wells and that these data provide the most valuable insight into CBWCB groundwater quality. Groundwater samples collected from WRD's nested wells are submitted immediately after collection to a State-certified laboratory for analysis for general water quality constituents, known or suspected natural and man-made contaminants, and other select constituents of interest.

Historically, WRD has performed groundwater sampling of its nested monitoring wells on a semi-annual schedule, and over the past few decades has compiled an enormous database of analytical results. In WY 2017-18, WRD conducted an intensive review of this database specifically to determine if the frequency of sampling could be reduced at some wells without compromising its current high-quality assessment of groundwater conditions in the CBWCB. Using criteria such as the length of time a well has been in service, and the nature of concentration trends within each zone at a nested monitoring well site, WRD was able to identify 11 nested wells where the sampling frequency could be reduced from semi-annual to annual. Commencing in WY 2017-18 and continuing into WY 2021-2022, semi-annual sampling was not conducted during fall sampling events at Bell Gardens #1, Carson #2, Cerritos #1, Commerce #1, Compton #2, Hawthorne #1, Lakewood #1, Long Beach #2, Long Beach #8, Norwalk #1, and Whittier #2. However, annual sampling was conducted at those wells each year during the spring sampling events. This reduction in sampling has produced net cost savings without sacrificing the quality of data provided by WRD. As the quantity of data from each nested well site continues to increase, WRD will periodically review that data and where conditions allow, will reduce the sampling frequency at additional nested well sites. WRD will closely monitor the data collected from the reduced frequency wells to assure that conditions that allowed their reductions still exist; if they do not, sampling will be resumed on a semi-annual schedule.

Table 3.1 presents water quality analytical results from 38 WRD nested monitoring wells (220 individual well zones) in the Central Basin during WY 2021-2022. Included in these results for the first time this WY are data from the seven individual well zones that were installed at the Paramount #1 nested well site at the beginning of WY 2021-2022. **Table 3.2** presents water quality analytical results from 22 WRD nested monitoring wells (112 individual well zones) in the West Coast Basin during WY 2021-2022. Complementing the data from WRD's nested monitoring well network, data for CBWCB production wells were obtained from the DDW based on results submitted by purveyors for their DDW Title 22 drinking water compliance.

Water quality maps for nested monitoring wells for WY 2021-2022, and production wells for the three-year period spanning October 2019 through September 2022, are presented herein for 11 water quality constituents (**Figures 3.1 – 3.22**). The 11 constituents include TDS, iron, manganese, chloride, nitrate, trichloroethylene (TCE), tetrachloroethylene (PCE), arsenic, perchlorate, hexavalent chromium, and 1,4-dioxane. The maps illustrate areal and vertical differences in water quality and compare the aquifer-specific water quality data from WRD's nested monitoring wells to the averaged water quality data collected from purveyors' production wells.

3.1.1 Total Dissolved Solids (TDS)

TDS is a measure of the total mineralization of water and is indicative of general water quality. In general, the higher the TDS, the less desirable a given water supply is for beneficial uses. The SMCL for TDS ranges from 500 milligrams per liter (mg/L), which is the recommended level, to an upper level of 1,000 mg/L, and to 1,500 mg/L, which is the level allowed for short-term use. WRD uses the 1,000 mg/L upper level SMCL for water quality comparisons and analyses.

WRD nested monitoring well data for WY 2021-2022 indicate relatively low TDS concentrations for groundwater in the producing aquifers of the Central Basin. As shown on **Figure 3.1**, in the Central Basin, TDS was detected in WRD nested monitoring wells at concentrations above the SMCL in 21 out of 220 individual well zones (10%). In the West

Coast Basin, TDS was detected in WRD nested monitoring wells at concentrations above the SMCL in 42 out of 112 individual well zones (38%). Elevated TDS concentrations in the West Coast Basin were observed along the coast from Redondo Beach to LAX, in the Torrance area, Inglewood area, and Dominguez Gap area.

Figure 3.2 presents DDW water quality data for the maximum TDS detection in production wells across the WRD service area for a three-year period spanning WYs 2019-2022. In the Central Basin, TDS was not detected above the Upper Level SMCL of 1,000 mg/L in any of the 174 production wells sampled for TDS during this period. In the West Coast Basin, TDS was detected at concentrations above the SMCL in five out of 30 production wells (20%). The elevated TDS levels detected in the West Coast Basin may be caused by seawater intrusion, connate brines, or perhaps oil field brines.

3.1.2 Iron

Iron occurs naturally in groundwater. Sources for iron in the water supply are both natural and man-made. Iron is leached from sediments in subsurface aquifers and steel pipes used for construction of water wells and distribution systems. Sufficient concentrations of iron in water can affect its suitability for domestic or industrial purposes. Some industrial processes cannot tolerate more than 0.1 mg/L iron. The SMCL for iron in drinking water is 0.3 mg/L. High concentrations of iron in water can stain plumbing fixtures and clothing, encrust well screens, clog pipes, and may impart a salty taste. While these problems are recognized, iron is considered an essential nutrient, important for human health, and does not pose significant health effects except in special cases.

Nested monitoring well data do not indicate iron to be a widespread water quality problem in groundwater in the WRD service area. As shown on **Figure 3.3**, in the Central Basin, iron was detected in WRD nested monitoring wells at concentrations above the SMCL of 0.3 mg/L in 14 out of 220 individual well zones (6%). In the West Coast Basin, iron was detected in WRD nested monitoring wells at concentrations above the SMCL in 16 out of 112 individual well zones (14%).

Figure 3.4 presents DDW water quality data for the maximum iron detection in production wells across the WRD service area for a three-year period spanning WYs 2019-2022. In the Central Basin, iron was detected at concentrations above the SMCL of 0.3 mg/L in 15 out of 217 production wells (6%). In the West Coast Basin, iron was detected at concentrations above the SMCL in six out of 35 production wells (17%).

3.1.3 Manganese

Manganese is naturally occurring and in high concentrations may be objectionable in water in the same manner that iron is. Stains caused by manganese are black and are more unsightly and harder to remove than those caused by iron. While manganese is considered an essential nutrient for human health at low levels, an SMCL of 50 micrograms per liter (μ g/L) is established for manganese due to its undesirable aesthetic qualities; manganese also has an NL of 500 μ g/L.

Manganese concentrations in the WRD nested monitoring wells exhibit widespread vertical and horizontal variations across the WRD service area. In the southeast portion of the Central Basin, elevated manganese typically occurs in shallower aquifers above the Silverado producing zones. In the northern portion of the Central Basin, manganese is present in shallow zones, the Silverado zones, and the deeper zones. As shown in **Figure 3.5**, in the Central Basin nested well sites, manganese concentrations exceed the SMCL of 50 μg/L in 72 out of 220 individual well zones (33%), and in three of those 72 zones (4%) manganese was detected at concentrations above the NL of 500 μg/L. In West Coast Basin nested well sites, manganese was detected at concentrations above the SMCL in 51 out of 112 individual well zones (46%), and in six of those 51 zones (12%) it was detected at concentrations above the NL.

Figure 3.6 presents DDW water quality data for the maximum manganese detection in production wells across the WRD service area for a three-year period spanning WYs 2019-2022. Manganese was detected in Central Basin production wells at concentrations above the SMCL of 50 μ g/L in 36 out of 182 production wells (20%), and in one of those 36 wells (3%) manganese was detected at a concentration above the

NL of 500 μ g/L. Manganese was detected in West Coast Basin production wells at concentrations above the SMCL in 20 out of 35 production wells (57%) but was not detected at concentrations above the NL in any of those 35 wells.

3.1.4 Chloride

Chloride at elevated levels causes water to taste salty and it is the characteristic constituent used to identify seawater intrusion. The recommended SMCL for chloride is 250 mg/L with an upper SMCL of 500 mg/L, and a short term SMCL of 600 mg/L.

Figure 3.7 presents water quality data for chloride in WRD nested monitoring wells in the WRD service area during WY 2021-2022. In the Central Basin, with only a few exceptions all 38 nested well sites generally have low chloride concentrations. As shown on Figure 3.7, chloride was detected in WRD nested monitoring wells in the Central Basin at concentrations above the upper SMCL of 500 mg/L in six out of 220 individual well zones (3%) and in five of those six wells (83%) chloride was detected above the short term SMCL of 600 mg/L. In the West Coast Basin, chloride was detected in WRD nested monitoring wells at concentrations above the upper SMCL of 500 mg/L in 30 out of 112 individual well zones (27%); in 26 of those 30 individual well zones (87%) chloride was at a concentration above the short term SMCL of 600 mg/L.

Figure 3.8 presents DDW water quality data for the maximum chloride detection in production wells in the WRD service area for a three-year period spanning WYs 2019-2022. Chloride was not detected above the upper SMCL of 500 mg/L in any of the 179 Central Basin production wells sampled for chloride during this period. In the West Coast Basin, four of the 32 (12%) production wells tested, all of which are located on the west side of the basin near the coast, had chloride concentrations above both the upper SMCL of 500 mg/L and the short term SMCL of 600 mg/L.

3.1.5 Nitrate

MCLs were established by DDW for two forms of nitrogen in drinking water, nitrate and nitrite. Nitrate (measured as nitrate) has an MCL of 45 mg/L, which corresponds

to 10 mg/L of nitrate as nitrogen. Nitrite (measured as nitrogen) has an MCL of 1 mg/L. The combined total of the nitrate and nitrite, measured as nitrogen, has an MCL of 10 mg/L. These constituents are regulated because they present possible acute health risks and can cause anoxia in infants. When consumed at concentrations in excess of the MCLs, they reduce the uptake of oxygen causing shortness of breath, lethargy, and a bluish skin color.

Nitrate concentrations in groundwater are also a concern because their presence indicates that a degree of contamination has occurred due to the degradation of organic matter. Native groundwater typically does not contain nitrate. It can be introduced into groundwater from agricultural practices such as fertilization of crops or lawns and leaching of animal wastes. Low concentrations of nitrogen compounds, including nitrate and nitrite, are present in treated recycled water below regulatory and permitted limits and may be a source of nitrate loading to groundwater. Typically, organic nitrogen and ammonia are the initial byproducts of the decomposition of human or animal wastes. Upon oxidation, the organic nitrogen and ammonia are converted first to nitrite and then to nitrate ions in the subsurface. A portion of the nitrate and nitrite are converted to nitrogen gas and are returned to the atmosphere.

Figure 3.9 presents nitrate (as nitrogen) water quality data for nested monitoring wells in the WRD service area during WY 2021-2022. In the Central Basin, nitrate (as nitrogen) was detected in WRD nested monitoring well locations at concentrations above the MCL of 10 mg/L in three out of 220 individual well zones (1%). In general, nested monitoring wells in the immediate vicinity of the Montebello and Los Angeles Forebays typically contain nitrate at concentrations below the MCL in the shallower zones. Some wells downgradient from the Montebello Forebay have middle zones with nitrate detections below the MCL. Nested wells further downgradient from the Forebays generally do not have detectable concentrations of nitrate. In the West Coast Basin, nitrate was detected in WRD nested monitoring well locations at concentrations above the MCL in four out of 112 individual well zones (4%).

Figure 3.10 presents DDW water quality data for the maximum nitrate detection in production wells across the WRD service area for a three-year period spanning WYs 2019-2022. None of the 212 Central Basin production wells tested for nitrate contained nitrate (as nitrogen) above the MCL of 10 mg/L. None of the 33 production wells tested in the West Coast Basin for nitrate exceeded the MCL during WYs 2019-2022.

3.1.6 Trichloroethylene (TCE)

TCE is a solvent used in metal degreasing, textile processing, and dry cleaning. In addition to its multiple, acute effects on health, TCE is also classified as a probable human carcinogen. The MCL for TCE in drinking water is $5 \mu g/L$. If present in water, TCE can be removed easily by common treatment processes, including air stripping or vapor extraction utilizing granular activated carbon filtration media.

As shown on **Figure 3.11**, in the Central Basin TCE was detected in WRD nested monitoring well locations at concentrations above the MCL of 5 μg/L in eight out of 220 individual well zones (4%). In the West Coast Basin, TCE was detected in WRD nested monitoring well locations at concentrations above the MCL in one out of 112 individual well zones (<1%). Nested wells impacted by TCE are generally located in the northern portion of the Central Basin, within or near the Los Angeles Forebay.

Figure 3.12 presents DDW water quality data for the maximum TCE detection in production wells across the WRD service area for a three-year period spanning WYs 2019-2022. As shown on Figure 3.12, in the Central Basin TCE was detected at concentrations above the MCL of 5 μg/L in 16 out of 212 production wells (8%). Wells impacted by TCE are generally located in the northern portion of the Central Basin within, between and downgradient of the Montebello and Los Angeles Forebays. In the West Coast Basin, TCE was detected at a concentration above the MCL of 5 μg/L in one of the 33 production wells (3%) tested for TCE during WYs 2019-2022.

3.1.7 Tetrachloroethylene (PCE)

PCE (also known as tetrachloroethylene, tetrachloroethene, perc, perclene, and perchlor) is a solvent used commonly in the dry-cleaning industry, as well as in metal degreasing and textile processing. The MCL for PCE in drinking water is $5 \mu g/L$. In addition to its multiple acute health effects, PCE is also classified as a probable human carcinogen. If present in water, PCE can be removed easily by common treatment processes, including air stripping or vapor extraction utilizing granular activated carbon filtration media.

As shown on **Figure 3.13**, in the Central Basin PCE was detected in WRD nested monitoring well locations at a concentration above the MCL of 5 μ g/L in one out of 220 individual well zones (<1%). PCE was not detected at a concentration above the MCL in any of the WRD nested monitoring well sites located in the West Coast Basin.

Figure 3.14 presents DDW water quality data for the maximum PCE detection in production wells WRD service area for three-year across the period spanning WYs 2019-2022. In the Central Basin, PCE was detected **MCL** at concentrations above the of 5 in 12 out of 212 production μg/L wells (6%). Production wells with detectable PCE concentrations are primarily located within and in between the Los Angeles and Montebello Forebays; however, several are located to the south and further into the CBPA. PCE was not detected in any of the 33 West Coast Basin production wells tested for PCE.

3.1.8 Arsenic

Arsenic is an element that occurs naturally in the earth's crust and accordingly there are natural sources of arsenic, including weathering and erosion of rocks, deposition of arsenic in water bodies, and uptake of the metal by plants and animals. Consumption of food and water are the major sources of arsenic exposure for the majority of U.S. citizens. Over 90% of commercial arsenic is used as a wood preservative in the form of chromate copper arsenate to prevent dry rot, fungi, molds, termites, and other pests. People may also be exposed from industrial applications, such as semiconductor manufacturing, petroleum refining, animal feed additives, and herbicides. Arsenic is classified as a known human

carcinogen by the United States Environmental Protection Agency (USEPA), and causes other health effects, such as high blood pressure and diabetes. The DDW established an MCL of $10 \mu g/L$ for arsenic.

Figure 3.15 presents water quality data for arsenic in WRD nested monitoring wells during WY 2021-2022. In the Central Basin, arsenic was detected in WRD nested monitoring well locations at concentrations above the MCL of $10 \mu g/L$ in 20 out of 220 individual well zones (9%). In the West Coast Basin, arsenic was detected at a concentration above the MCL in one out of 112 individual well zones (<1%).

Figure 3.16 presents DDW water quality data for the maximum arsenic detection in production wells across the WRD service area for a three-year period spanning WYs 2019-2022. In the Central Basin, arsenic was detected at concentrations above the MCL of $10 \,\mu\text{g/L}$ in eight out of $178 \,(4\%)$ production wells. In the West Coast Basin, arsenic was not detected at a concentration above the MCL in any of the 28 production wells tested for arsenic.

3.1.9 Perchlorate

Perchlorate is used in a variety of defense and industrial applications, such as rockets, missiles, road flares, fireworks, air bag inflators, lubricating oils, tanning and finishing leather, and the production of paints and enamels. Under certain conditions, perchlorate is also reported to occur naturally in groundwater (Trumpolt, 1995). When ingested, it can inhibit the proper uptake of iodide by the thyroid gland, which causes a decrease in hormones for normal growth and development and normal metabolism. In October 2007, the DDW established an MCL of 6 µg/L for perchlorate.

Figure 3.17 presents perchlorate water quality data for WRD nested monitoring wells during WY 2021-2022. In the Central Basin, perchlorate was not detected in WRD nested monitoring well locations at concentrations above the MCL of 6 μ g/L in any of the 220 individual well zones. In the West Coast Basin, perchlorate was detected in WRD

nested monitoring well locations at concentrations above the MCL in one out of 112 individual well zones (<1%).

Figure 3.18 presents DDW water quality data for the maximum perchlorate detection in production wells across the WRD service area for a three-year period spanning WYs 2019-2022. In the Central Basin, perchlorate was detected at concentrations above the MCL of $6 \,\mu\text{g/L}$ in two out of 189 production wells (1%). Perchlorate was not detected in any of the 30 West Coast Basin production wells that were tested for perchlorate.

3.1.10 Hexavalent Chromium

Hexavalent chromium (chromium-6) and trivalent chromium (chromium-3) are two forms of the metal chromium found in groundwater. Together, these two forms of chromium are designated "total chromium". The MCL for total chromium is $50~\mu g/L$. In 2014 California established an MCL of $10~\mu g/L$ for hexavalent chromium; however, on May 31, 2017, a judgment was issued by the Superior Court of California that invalidated the MCL for hexavalent chromium in drinking water. The Court has ordered the State Water Resources Control Board (SWRCB) to adopt a new MCL; in the meantime, the MCL for Total Chromium will remain in place. The SWRCB will use data collected since the standard was adopted in 2014 to help establish a new MCL; they note that it generally takes between 18 and 24 months to develop regulation. To remain consistent with prior reporting and aid in assessing concentration trends, WRD will continue to discuss hexavalent chromium results herein in terms of the historic MCL value of $10~\mu g/L$ until a new MCL is established by the SWRCB.

Both forms of chromium occur naturally in groundwater and are also introduced to soil and groundwater through disposal practices from commercial and industrial operations. Only hexavalent chromium is considered to pose health risks. It has been known to increase cancer risk when inhaled and has recently been shown to increase the risk of cancer if ingested.

Figure 3.19 shows hexavalent chromium concentrations in WRD nested monitoring wells in the WRD service area. In the Central Basin, hexavalent chromium was detected at concentrations above the historic MCL value of $10 \,\mu\text{g/L}$ in three out of 220 individual well zones (1%). In the West Coast Basin, hexavalent chromium was not detected at concentrations above the MCL in any of the individual well zones.

Figure 3.20 presents DDW water quality data for the maximum hexavalent chromium detection in production wells across the WRD service area for a three-year period spanning WYs 2019-2022. In the Central Basin, hexavalent chromium was detected at a concentration above the historic MCL of $10 \mu g/L$ in six out of 58 production wells (10%). Hexavalent chromium was not detected in any of the 14 West Coast Basin production wells that were tested for hexavalent chromium.

3.1.11 1,4-Dioxane

1,4-Dioxane is a synthetic organic compound. It is used as a stabilizer for solvents (in particular 1,1,1-trichloroethane) and as a solvent itself in several industrial and commercial applications. 1,4-Dioxane is also found in trace amounts in some cosmetic and personal care products such as detergents and shampoos. 1,4-Dioxane is highly soluble in water, does not readily bind to soils, readily leaches to groundwater, and is resistant to naturally occurring biodegradation processes. The USEPA classifies 1,4-Dioxane as a probable human carcinogen and a known irritant, and as a result it is included in the Third Unregulated Contaminant Monitoring Rule (UCMR 3). In November 2010, the SWRCB established a drinking water NL of 1 µg/L, and a RL of 35 µg/L, for 1,4-Dioxane.

Figure 3.21 shows 1,4-Dioxane concentrations in WRD nested monitoring wells in the WRD service area. In the Central Basin, 1,4-Dioxane was detected at concentrations above the NL of 1 μ g/L in 28 out of 220 individual well zones (13%). In the West Coast Basin, 1,4-Dioxane was detected above the NL of 1 μ g/L in one of the 112 individual well zones (<1%). 1,4-Dioxane was not detected at concentrations above the RL of 35 μ g/L in any of the individual well zones in the CBWCB.

Figure 3.22 presents DDW water quality data for the maximum 1,4-Dioxane detection in production wells across the WRD service area for a three-year period spanning WYs 2019-2022. In the Central Basin 1,4-Dioxane was detected at concentrations above the NL of 1 μ g/L in 51 of the 73 (70%) production wells that were tested. In the West Coast Basin, 1,4-Dioxane was not detected in any of the two production wells that were tested. 1,4-Dioxane was not detected at concentrations above the RL of 35 μ g/L in any CBWCB production wells.

3.2 QUALITY OF REPLENISHMENT WATER

This section discusses water quality data for key water quality constituents in CBWCB replenishment water and local surface water. Although numerous constituents are monitored, the constituents discussed and reported here are the ones found to be most prevalent at elevated levels or are of current regulatory interest. The data are classified according to their sources. The key water quality parameters of this discussion were also discussed for the WRD nested monitoring wells: TDS, iron, manganese, chloride, nitrate, TCE, PCE, arsenic, perchlorate, hexavalent chromium, and 1,4-Dioxane. Monitoring of these constituents helps to understand the general chemical nature of the recharge source, and its suitability for replenishing the groundwater basins.

3.2.1 Quality of Imported Water

Surface water is imported by the Metropolitan Water District of Southern California (MWD) to the WRD service area from the Colorado River and from Northern California via the State Water Project for potable supply and for groundwater recharge. Untreated imported water, when needed and available, is used for recharge at the Montebello Forebay Spreading Grounds. For groundwater recharge at the spreading grounds, Colorado River water deliveries have been suspended due to the potential presence of quagga mussels and there was no imported water received from the State Water Project for groundwater replenishment at the spreading grounds in WY 2021-2022. Currently, treated imported water and advanced treated recycled water are injected into the three seawater intrusion barriers. Treated imported water meets all drinking water standards and is thus suitable for

direct injection. For WY 2021-2022, approximately 12,409 AF of treated imported water were injected into the West Coast Basin, Dominguez Gap, and Alamitos Gap Barrier Projects combined. Average water quality data for treated and untreated imported water are presented in **Table 3.3**.

In 2021, the average TDS concentration of untreated Colorado River water was 583 mg/L and the average TDS concentration of untreated water from the State Water Project was 274 mg/L.

In 2021, average concentrations of nitrate (as Nitrogen) were below detection limits in both untreated Colorado River water and untreated water from the State Water Project. Recently and historically, both Colorado River and State Water Project nitrate concentrations have remained below the MCL.

In 2021, the average concentrations of iron were below detection limits in both untreated Colorado River water and untreated water from the State Water Project. Colorado River and State Water Project iron and manganese concentrations have recently and historically been below the SMCL.

The average chloride concentrations in untreated water from the Colorado River and State Water Project have not changed significantly over the past several years. State Water Project and Colorado River chloride concentrations have historically been below the SMCL of 500 mg/L for chloride.

According to the MWD, TCE, PCE, hexavalent chromium, and perchlorate were not detected in water from the Colorado River or State Water Project during calendar year 2021. Both Colorado River and State Water Project TCE, PCE, hexavalent chromium, and perchlorate concentrations have historically been below their respective MCLs.

3.2.2 Quality of Recycled Water

Recycled water is used for groundwater recharge in the WRD Service Area for percolation through the Montebello Forebay Spreading Grounds, which is comprised of the Rio Hondo Coastal Spreading Grounds and the San Gabriel Coastal Spreading Grounds, and for injection into the seawater barriers. In the Montebello Forebay, recycled water is produced by two entities: the Los Angeles County Sanitation Districts (LACSD), and the WRD. Both entities divert their produced water into the Montebello Forebay Spreading Grounds where it percolates into the subsurface to recharge the underlying aquifers. LACSD produces its tertiary-treated recycled water at its Whittier Narrows Water Reclamation Plant (WRP), San Jose Creek East WRP, San Jose Creek West WRP, and Pomona WRP facilities. WRD produces advanced treated recycled water that meets drinking water quality standards and other stringent regulations at its Albert Robles Center for Water Recycling and Environmental Learning (ARC) advanced water treatment facility (AWTF). The effluent from each of these five facilities is carefully controlled and monitored, as required by permits and other regulations, and typically shows little water quality variation over time. Average water quality data for the effluent from the five facilities is shown in Table 3.3.

All constituents listed have remained stable over recent WYs. Furthermore, arsenic, TCE, PCE, perchlorate, and hexavalent chromium have either not been detected or have been detected well below their respective MCLs in recycled water from the five facilities. 1,4-Dioxane concentrations in recycled water from the Whittier Narrows, San Jose Creek West, San Jose Creek East and Pomona WRPs, and from the ARC AWTF do not exceed the NL of 1.0 μg/L or the RL of 35 μg/L. N-Nitrosodimethylamine (NDMA) was detected above its NL of 10 nanograms per liter (ng/L) in recycled water from the San Jose Creek West, San Jose Creek East, and Pomona WRPs.

Currently, both treated imported water and advanced treated recycled water produced by the West Basin Municipal Water District (WBMWD) Edward C. Little Water Recycling Facility (ELWRF) are injected at the West Coast Basin Barrier to prevent the intrusion of seawater and replenish the groundwater basin. Treatment processes at the ELWRF include microfiltration, reverse osmosis, ultraviolet light, advanced oxidation with hydrogen peroxide, and chemical stabilization. The advanced treated recycled water complies with all drinking water standards and thus, is suitable for direct injection. The ELWRF was expanded in September 2013, and it is expected that ultimately advanced treated recycled water will replace nearly all the imported water used for injection at the West Coast Basin Barrier. **Table 3.3** presents average water quality data for the advanced treated recycled water produced by the ELWRF.

The Alamitos Gap Seawater Intrusion Barrier currently receives both treated imported water and advanced treated recycled water produced by WRD's Leo J. Vander Lans Advanced Water Treatment Facility (Vander Lans AWTF) for injection. The Vander Lans AWTF treats the tertiary-treated effluent from the LACSD Long Beach WRP using microfiltration, reverse osmosis, ultraviolet light, and advanced oxidation with hydrogen peroxide. The advanced treated recycled water meets drinking water quality standards and other stringent regulations for direct injection into the aquifers. The Vander Lans AWTF was expanded in 2014 to allow additional capacity and ultimately to replace nearly all the imported water used for injection at the Alamitos Gap Seawater Intrusion Barrier. The facility has been consistently operational during WY 2021-2022 and has provided approximately 60% of barrier demand. The facility is expected to run at near full capacity in the future. Table 3.3 presents average water quality data for the advanced treated recycled water produced by the Vander Lans AWTF.

The City of Los Angeles Terminal Island Water Reclamation Plant/Advanced Water Treatment Facility (TIWRP) produces advanced treated recycled water using microfiltration, reverse osmosis, ultraviolet light, and advanced oxidation using sodium hypochlorite. This water meets drinking water quality standards and other stringent regulations for direct injection into aquifers. Currently, treated imported water is blended with advanced treated recycled water from the TIWRP for injection at the Dominguez Gap Seawater Intrusion Barrier. Expansion of the TIWRP was completed in December 2016 and included the installation of an advanced oxidation process into the treatment train. In WY 2021-2022 various operational and maintenance issues prevented

TIWRP from providing the optimal volume of recycled water to the barrier. Through September 2022 the TIWRP has delivered approximately 62% of barrier demand. It is anticipated that ultimately the advanced treated recycled water produced at the facility will replace nearly all the imported water used for injection into the Dominguez Gap Seawater Intrusion Barrier. **Table 3.3** presents average water quality data for the advanced treated recycled water produced by the TIWRP.

3.2.3 Quality of Stormwater

Stormwater infiltrates the subsurface to varying degrees throughout the WRD service area. It is also intentionally diverted from the major storm channels and used for groundwater recharge along with imported and recycled water at the Montebello Forebay Spreading Grounds. Routine stormwater quality analyses are typically performed by LACPW and other entities; however, most of the constituents that are usually reported by LACPW were not analyzed during WY 2020-2021, and therefore those results are not available for inclusion in this report. Average stormwater quality data for those constituents that were provided by LACPW for WY 2020-2021 are presented on **Table 3.3**.

3.3 MINERAL CHARACTERISTICS OF GROUNDWATER IN THE CENTRAL BASIN AND WEST COAST BASIN

Major minerals data obtained from the WRD nested monitoring wells were used to characterize groundwater of discrete vertical zones (**Table 3.4**). Research by the USGS led to three distinct groupings of groundwater compositions. Group A groundwater is typically calcium bicarbonate or calcium bicarbonate/sulfate dominant. Group B groundwater has a typically calcium-sodium bicarbonate or sodium bicarbonate character. Group C has a sodium chloride character. Several of the WRD wells yield results that do not fall into one of the three major groups and are thus classified separately as Group D.

Groundwater from Group A likely represents recent recharge water containing a significant percentage of imported water. Group B represents older native groundwater replenished by natural local recharge. Group C represents groundwater impacted by seawater intrusion or connate saline brines. **Table 3.4** lists the groundwater group for each WRD nested monitoring well. Comparison of groundwater groups with well locations indicates that, in general, Group A groundwater is found at and immediately downgradient from the Montebello Forebay Spreading Grounds in all but the deepest zones. Group B groundwater is found farther down the flow path within the Central Basin and inland of the West Coast Basin Seawater Intrusion Barrier. Group C groundwater is generally found near the coastlines or in deeper zones. Several wells, grouped as "Other" on **Table 3.4**, exhibit a chemical character range different from Groups A, B, or C and indicate unique waters not characteristic of the dominant flow systems in the basins.

SECTION 4

SALT AND NUTRIENTS IN GROUNDWATER

In February 2009, the SWRCB adopted Resolution No. 2009-0011, which established a statewide Recycled Water Policy. This Policy encourages increased use of recycled water and local stormwater for groundwater recharge across the State. It also requires local entities to develop a Salt and Nutrient Management Plan (SNMP) for each groundwater basin in California to monitor groundwater quality and any impact due to increased use of recycled water and stormwater for recharge.

A SNMP Workplan was jointly prepared by the CBWCB stakeholders and approved by the Los Angeles Regional Water Quality Control Board in December 2011. The SNMP for the CBWCB was finalized on February 12, 2015 and adopted in July 2015. The full text of the "2015 Salt Nutrient Management Plan – 2015" can be found at https://www.wrd.org/other-reports.

The objective of the SNMP is to manage salts and nutrients from all sources "... on a basin-wide or watershed-wide basis in a manner that ensures attainment of water quality objectives and protection of beneficial uses." Future groundwater quality and assimilative capacity were calculated based on predicted salt and nutrient loading through 2025 in the CBWCB. Accordingly, current and proposed projects through 2025 were identified and used to develop strategies to manage salt and nutrient loading. The SNMP included the following:

- Stormwater and Recycled Water Use/Recharge Goals and Objectives,
- Characterization of the Hydrogeologic Conceptual Model/Water Quality,
- Estimation of Current and Future Salt and Nutrient Loading,
- A Basin-Wide Water Quality Monitoring Plan,
- Estimation of Salt and Nutrient Assimilative Capacity,
- An Anti-degradation Analysis,
- Implementation Measures to Manage Salt and Nutrient Loading, and
- California Environmental Quality Act analysis of the SNMP.

WRD's RGWMP was used to develop the SNMP monitoring program. The groundwater data evaluated in the annual RGWMRs provide an annual assessment of salt and nutrients in groundwater. In addition to the water quality maps generated and discussed in Section 3, historical trend graphs at key monitoring well locations, as described in the following sections, were used to assess salt and nutrient concentrations in groundwater.

4.1 SALT AND NUTRIENT MONITORING LOCATIONS

As discussed in the SNMP, TDS, chloride, and nitrate were identified as the most appropriate indicators of salt and nutrients in the CBWCB. These constituents, as well as other constituents of concern identified in the SNMP, are monitored in the WRD nested monitoring wells along with production wells located throughout the CBWCB.

As part of the SNMP monitoring program, 13 key monitoring well locations in the CBWCB were selected to evaluate past and current salt and nutrient concentrations in groundwater with respect to applicable water quality objectives (WQOs). As established in the Basin Plan, the WQO for TDS in the Central Basin CBWCB is 700 mg/L and in the West Coast Basin it is 800 mg/L. The WQO for chloride in the Central Basin is 150 mg/L and 250 mg/L in the West Coast Basin. The MCL/WQO for nitrate (as nitrogen) is 10 mg/L in both the Central Basin and the West Coast Basin.

In accordance with the statewide Recycled Water Policy, the 13 selected nested well locations are in the most critical areas of the basins, based on their proximity to water supply wells and groundwater recharge projects that utilize recycled water, including the seawater intrusion barriers (Alamitos Gap Barrier, Dominguez Gap Barrier, and West Coast Basin Barrier) and the Montebello Forebay Spreading Grounds. There are three nested well locations in the Montebello Forebay, one in the Los Angeles Forebay, four in the CBPA, one in the Whittier Area, and four in the West Coast Basin. Monitoring locations in the Montebello Forebay and Los Angeles Forebay target groundwater where connectivity with adjacent surface waters is possible.

The 13 key nested well locations are shown as a different symbol set on **Figure 1.3**. These locations include 69 individual monitoring zones, screened in specific CBWCB aquifers. The depths and aquifer designation for these key monitoring wells are provided in **Table 1.1**. WRD is the entity, designated by the SWRCB, responsible for collecting TDS, chloride, and nitrate samples (on a semi-annual basis) from these nested wells.

4.2 SALT AND NUTRIENT MONITORING RESULTS AND EVALUATION

Concentrations of salt and nutrients have been and continue to be closely monitored in all WRD nested monitoring wells and purveyors' production wells and results are discussed in Section 3. Concentrations of TDS, chloride, and nitrate (as nitrogen) for all WRD nested wells sampled during WY 2021-2022 are shown on maps (Figures 3.1, 3.7, and 3.9, respectively) and are summarized along with other monitored constituents identified in Tables 3.1 and 3.2. TDS, chloride, and nitrate (as nitrogen) concentrations in production wells, sampled during WYs 2019-2022 are presented on maps (Figures 3.2, 3.8, and 3.10, respectively). Trends for TDS and chloride concentrations at the 13 key well locations discussed above in Section 4.1 are plotted on graphs and compared to SMCLs and WQOs (Figures 4.1 through 4.13). Nitrate generally has not been detected in the monitoring wells, or it has been detected only at concentrations significantly below the MCLs and WQOs, and thus, trend graphs for nitrate have not been prepared. However, nitrate continues to be monitored as part of the RGWMP and is reported in Section 3 of the annual RGWMRs.

For the Montebello Forebay, TDS and chloride concentration trends for the key well locations Rio Hondo #1 (six zones), Pico #2 (six zones), and Norwalk #2 (six zones) are presented on **Figures 4.1** through **4.3**, respectively.

- At Rio Hondo #1, TDS and chloride concentrations have historically been and remain below the WQOs and SMCLs.
- At Pico #2, TDS and chloride concentrations have generally remained below the SMCLs and WQOs, with the exception of a one-time detection in September 2008 of TDS in Zone 2 at a concentration slightly above the WQO (750 mg/L), and a

one-time detection in September 2018 of chloride in Zone 6 at the WQO of 150 mg/L. TDS concentrations in Zone 2 have increased slightly since the fall of 2020, but they remain below the WQO.

• At Norwalk #2, TDS and chloride concentrations have historically been and remain below the WQOs and SMCLs.

For the Los Angeles Forebay, the key well is Huntington Park #1 (four zones). TDS and chloride concentration trend graphs are shown on **Figure 4.4**.

• At Huntington Park #1, the deeper two zones show stable trends for TDS and chloride at concentrations below the WQOs and SMCLs. The shallower two zones indicate a relatively stable trend in chloride concentrations that are below both the WQO and SMCL. TDS concentrations in the shallower two zones have increased slightly since the wells were first installed. Over the past 12 years TDS concentrations in the shallowest zone (Zone 4) are consistently above the WQO of 700 mg/L. TDS concentrations in Zone 3 have fluctuated just above and below the WQO over the past 12 years, however since the spring of 2016 they have been measured at concentrations greater than the WQO. TDS concentrations in both shallow zones remain below the SMCL of 1,000 mg/L.

For the CBPA, key wells include South Gate #1 (five zones), Willowbrook #1 (four zones), Long Beach #6 (six zones), and Seal Beach #1 (seven zones). TDS and chloride trends are shown on **Figures 4.5** through **4.8**, respectively.

- At South Gate #1, the four deeper zones show TDS and chloride concentrations at relatively consistent values below the SMCLs and WQOs. TDS and chloride concentrations in Zone 5 of South Gate #1 have increased slightly since initial sampling but have remained relatively stable over the past 13 years and are below both the WQOs and SMCLs.
- At Willowbrook #1, all four zones show stable trends in TDS and chloride concentrations and are at values well below both the WQOs and SCMLs.
- At Long Beach #6, all six zones show stable chloride trends with concentrations well below both the WQO and SMCL. TDS concentrations in Zones 3, 4, 5 and 6

are stable and below both the WQO and SMCL. In Zone 1, the deepest zone of Long Beach #6, TDS is typically detected close to the WQO of 700 mg/L. TDS concentrations in Zone 2 fluctuate by as much as 50% with historic highs near the WQO; however, over the past seven years TDS concentrations have stabilized somewhat in Zone 2, are below the WQO, and show a generally decreasing trend.

• At Seal Beach #1, the deeper six zones have historically contained TDS and chloride at concentrations below the WQOs and SMCLs; however, chloride concentrations in Zone 5 have increased over the past six years and have been measured at concentrations above the WQO, but below the SMCL, for the past four years. TDS and chloride concentrations in Zone 7 increased for several years after the wells were first installed; however, concentrations of both constituents have since stabilized somewhat. TDS and chloride concentrations in Zone 7 are both at values well above the WQOs and SCMLs and are likely due to the effects of seawater intrusion.

For the Whittier Area, represented by key well Whittier #1 (five zones), TDS and chloride trends are shown on **Figure 4.9**.

• At Whittier #1, TDS concentrations in Zones 4 and 5 have been generally stable since the wells were installed and are below both the WQO and SMCL. TDS concentrations in Zones 1, 2, and 3 have historically exceeded the WQO and SMCL; however, TDS concentrations in Zones 1 and 2 have remained stable, and in Zone 3 after increasing for several years, TDS concentrations have remained relatively stable for the past six years. Chloride concentrations in Zones 4 and 5 have been below both the WQO and SMCL since the wells were installed. Chloride concentrations in Zones 1, 2, and 3 have shown a stable trend since the wells were installed; however, although they have been well below the SCML, they have consistently exceeded the WQO.

For the West Coast Basin, key wells include PM-4 Mariner (four zones), Carson #1 (four zones), Manhattan Beach #1 (seven zones), and Wilmington #2 (five zones). TDS and chloride trends are presented on **Figures 4.10** through **4.13**, respectively.

- At PM-4 Mariner, Zones 1, 3, and 4 show TDS and chloride at relatively consistent concentrations below the WQOs and SMCLs. However, in Zone 2 TDS and chloride concentrations are well above the WQOs and SMCLs and both show generally increasing trends since monitoring began in 1998. These increasing concentration trends are attributed to historical seawater intrusion prior to the construction of the West Coast Basin Seawater Barrier.
- At Carson #1, all four zones contain TDS and chloride concentrations below both the WQOs and SMCLs; here the three deeper zones show relatively stable TDS and chloride concentrations, while concentrations of both constituents in the shallow Zone 4 have decreased from those observed during first few years of monitoring; concentrations of both have been stable for the past 19 years.
- At Manhattan Beach #1, groundwater in this coastal area shows evidence of impact by seawater intrusion. TDS concentrations in five of the seven zones exceed the WQO and SMCL, and in four zones the WQO and SMCL for chloride are exceeded. TDS and chloride concentrations in all seven of the zones at Manhattan Beach #1 appear to be rather stable.
- At Wilmington #2, TDS and chloride concentrations in Zones 1 and 3 have historically been below the WQOs and SMCLs but have increased to values that for the past several years have exceeded the WQOs. In Zones 2 and 5, TDS and chloride concentrations have been consistently above both the WQOs and SMCLs; in Zone 2 they have remained relatively stable, but in Zone 5 they have decreased to values well below those detected during the first years of sampling. In Zone 4, TDS and chloride concentrations initially exceeded both the WQOs and SMCLs, but they have decreased over time to the extent that they have been below both the WQOs and SMCLs for the past several years. Concentration decreases in Zone 4 are likely due to the implementation measures discussed in Section 4.3 below.

4.3 IMPLEMENTATION MEASURES TO MANAGE SALT AND NUTRIENT LOADING

As summarized in the previous section, overall TDS and chloride concentrations are generally stable at most of the 13 key nested monitoring locations in the CBWCB. While a few individual zones show increasing trends, a comparable number show decreasing trends. Notably, TDS and chloride concentrations in the two shallowest zones at nested well location Rio Hondo #1 and the three shallowest zones at Pico #2, each of which is beneath and adjacent to the Montebello Forebay recharge basins, have generally fluctuated within the same concentration range since 1998. At the key well location in the Los Angeles Forebay, Huntington Park #1, the two shallower zones have variable TDS concentrations at and above the WQO, but the two deeper zones do not show increasing TDS levels. In the CBPA, TDS concentrations in the shallowest zone at key well location South Gate #1 fluctuate slightly but remain relatively stable, and chloride concentrations have remained relatively stable over the past 16 years. TDS and chloride concentrations in the four lower zones are stable. Key nested monitoring well locations near the coast, including PM-4 Mariner, Manhattan Beach #1, and Seal Beach #1, have zones that show increasing TDS and chloride concentration trends that can be attributed to historical seawater intrusion. In the relatively isolated Whittier Area, historically high TDS and chloride concentrations in the middle and deep zones are stable and are not expected to fluctuate in response to anticipated management practices.

As discussed in the SNMP, TDS and chloride concentrations in the Central Basin are not expected to exceed WQOs in the future, and current and proposed projects in the basin are not expected to increase salt and nutrient concentrations above the available assimilative capacity. Two notable projects in the Central Basin include the increased use of advanced treated recycled water for injection at the Alamitos Gap Seawater Intrusion Barrier and the increased use of recycled water at the Montebello Forebay Spreading Grounds using a blend of tertiary treated water produced by the LACSD and advanced treated recycled water produced by WRD at its ARC AWTF (formerly known as the Groundwater Reliability Improvement Program (GRIP)).

In the West Coast Basin, average TDS and chloride concentrations can exceed WQOs due to historical seawater intrusion. However, these concentrations are either relatively stable or generally decreasing and are anticipated to achieve WQOs in the future due to implementation measures such as the increased use of advanced treated recycled water for injection at the West Coast Basin and Dominguez Gap Seawater Intrusion Barrier and the continued operation of the desalter wells located in Torrance.

Nitrate concentrations in the CBWCB remain low and are not expected to increase above the MCL or WQO in the future. Overall, the data show that salt and nutrient concentrations in groundwater are stable as a result of past and current groundwater management practices. Based on the existing water quality of the CBWCB and the future groundwater quality as estimated from the SNMP analysis, existing and planned implementation measures appear adequate to manage salt and nutrient loading on a sustainable basis.

SECTION 5

SUMMARY OF FINDINGS

This RGWMR was prepared by WRD to provide a comprehensive review of groundwater conditions in the WRD service area during WY 2021-2022. A summary of findings is presented below.

- Artificial replenishment activities combined with natural replenishment and controlled pumping have ensured a sustainable, reliable supply of groundwater in the WRD service area. Artificial replenishment water sources used by WRD include imported water supplied by MWD member agencies, tertiary-treated recycled water produced by the LACSD, and advanced treated recycled water produced by WBMWD, the City of Los Angeles, and WRD.
- Groundwater levels (heads) are monitored continuously in the WRD service area throughout the year. The WRD nested monitoring wells show clear, significant differences in groundwater elevations between the various aquifers. The water level differences in these nested wells reflect both hydrogeologic and pumping conditions in the WRD service area. Vertical head differences of up to 90 feet occur between zones above and within the producing aquifers. The greatest head differences between aquifers tend to occur in the southern area of the Central Basin (Long Beach) and the inland, eastern areas of the West Coast Basin (Gardena and Carson), while the smallest differences occur in the recharge area of the Montebello Forebay, and the southern area of the West Coast Basin (Torrance), which has merged and unconfined aquifers.
- Hydrographs and groundwater elevations measured in basinwide nested monitoring wells and key production wells in WY 2021-2022 indicate variable changes in groundwater elevations across the CBWCB during WY 2021-2022. In the unconfined Montebello Forebay in the vicinity of the spreading grounds, water levels are more than 11 feet lower than they were in fall 2021. Across the unconfined Los Angeles Forebay, water levels have either decreased or remain relatively unchanged from those measured in fall 2021; in the west they are as much

as three feet lower than, and in the east they are relatively unchanged from, those measured in WY 2020-2021. Water levels in the Whittier Area have either decreased or remain relatively unchanged from those measured in WY 2020-2021; in the west they are as much as seven feet lower than, and in the east they are relatively unchanged from, those measured in fall 2021. In the CBPA, water levels have generally increased nearly everywhere compared to those measured in fall 2021. Water level changes in the CBPA range from decreases west of the Los Angeles Forebay of more than four feet to increases of more than 17 feet in the southernmost portion of the CBPA along the Newport-Inglewood Uplift near the eastern boundary of the District.

- In the West Coast Basin water level changes were somewhat variable in WY 2021-2022. In the northern portion of the basin between the Newport-Inglewood Uplift and the Charnock Fault water levels have increased and are as much as seven feet higher than they were in fall 2021. In the southern portion of the basin near the Newport-Inglewood Uplift and southern coastal area, as well as in the vicinity of the northern portion of the West Coast Barrier Project near the cities of Hermosa Beach-Redondo Beach-El Segundo, water levels have decreased slightly and are between one and five feet lower than they were in fall 2021. In much of the Carson-Torrance-Lawndale and LAX areas, water levels are relatively unchanged from those measured in fall 2021.
- District wide, groundwater levels increased an average of more than one foot in WY 2021-2022. Across much of the northern portion of the Central Basin, water levels decreased; in the Montebello Forebay region water levels decreased an average of more than three feet, in the Los Angeles Forebay region they decreased an average of more than one foot, and in the Whittier Area they decreased by an average of more than two feet. In the CBPA water levels increased by an average of more than four feet. In the West Coast Basin, water levels decreased an average of less than one-half of one foot.
- There was an overall loss in groundwater storage across the District of 20,000 AF in WY 2021-2022, essentially all of which occurred in the Central Basin. In the unconfined Montebello Forebay there was a loss in storage of 18,200 AF, in the

- Los Angeles Forebay a loss of 1,900 AF, in the Whittier Area a loss of 900 AF, but in the CBPA there was a gain in storage of 1,000 AF. In the West Coast Basin there was no appreciable change in groundwater storage in WY 2021-2022.
- For the RGWMP assessment of groundwater quality, WRD collected over 600 samples from its nested monitoring wells throughout the WY and obtained water quality data from potable wells in the District from the DDW database. WRD uses 11 chemical compounds to summarize overall water quality across the district although results for over 100 compounds are present in our databases for each sample collected for the RGWMP. A discussion of the 11 constituents used follows:
 - O TDS concentrations for wells located in the Central Basin are relatively low, while those in the West Coast Basin are elevated in certain portions, primarily the coastal areas from Redondo Beach to LAX and the Torrance, Inglewood and Dominguez Gap areas. The elevated TDS concentrations (above the SMCL) may be caused by seawater intrusion, connate brines, or perhaps oil field brines.
 - Iron is generally common at low concentrations across the WRD service area. In Central Basin nested wells, iron concentrations above the SMCL are observed in and just downgradient of the Los Angeles and Montebello Forebays, while in production wells iron concentrations above the SMCL extend further downgradient from the Forebays southward into the CBPA. Across the West Coast Basin in both nested and production well sites, iron is present at concentrations above the SMCL at numerous locations.
 - Manganese is very common in groundwater across the CBWCB and was detected at all of the nested monitoring well sites and more than one third of the production well sites. It is present in the Central Basin at concentrations above the SMCL in more than 30% of the nested monitoring wells and about 20% of production wells but was only present above its NL in less than 5% of either type of those wells. Manganese is even more widespread in the West Coast Basin, where it was detected above the SMCL in more than 45% of nested monitoring wells and more than 55% of the production wells. It was detected

- above the NL in more than 10% of the nested monitoring wells and was not detected above the NL in any of the production wells in the West Coast Basin.
- Ochloride concentrations are low in the Central Basin and in wells within the inland areas of the West Coast Basin. Some coastal areas of the West Coast Basin are impacted by seawater intrusion and thus have high chloride concentrations in groundwater.
- Nitrate concentrations in WRD nested monitoring wells in the CBWCB are generally below the MCL. The few nested wells that have nitrate concentrations approaching or exceeding the MCL tend to be limited to the shallowest zones at a given location and are likely due either to localized surface recharge, or isolated areas of shallow impacts from industrial operations. Nitrate concentrations in CBWCB production wells are below the MCL.
- TCE detections in Central Basin nested monitoring wells are restricted to within and near the Los Angeles Forebay, but in Central Basin production wells elevated TCE concentrations are also observed within the Montebello Forebay and in wells in the vicinity and downgradient of both the Los Angeles and Montebello Forebays. In the West Coast Basin, TCE in nested monitoring wells is observed at a concentration above the MCL in just one individual well zone in the Hawthorne area, and it is not detected in any of the West Coast Basin production wells.
- O PCE was detected above the MCL in one of the Central Basin nested monitoring wells located in the Los Angeles Forebay, and detections below the MCL are observed within and near the Los Angeles and Montebello Forebays. Elevated concentrations of PCE in Central Basin production wells are observed in the areas within, between, and downgradient of the Los Angeles and Montebello Forebays. In the West Coast Basin, PCE was not detected in any of the nested monitoring wells or production wells.
- O Arsenic is present at low concentrations in groundwater from most of the WRD nested monitoring well sites. With few exceptions, arsenic in nested monitoring wells at concentrations above the MCL is generally restricted to areas within the southeastern portion of the Central Basin and in the Gardena area

of the West Coast Basin. Arsenic is also common in Central Basin production wells; however, it was only detected at concentrations above the MCL in about 4% of the wells tested, and these wells are generally restricted to the southeastern portion of the Central Basin. In the West Coast Basin, Arsenic was not detected at a concentration above the MCL in any of the 28 production wells tested.

- Perchlorate is relatively common at low concentrations in the nested monitoring wells within and downgradient of the Los Angeles and Montebello Forebays in the Central Basin but is rarely detected in West Coast Basin nested wells. Perchlorate in Central Basin production wells is detected within and just east of the Los Angeles Forebay, within the Montebello Forebay, and between the two Forebays. Perchlorate was not detected in any of the 30 West Coast Basin production wells.
- O Hexavalent chromium is present in the CBWCB at low concentrations at nearly every nested monitoring well site, but it is only found at concentrations above the historic MCL in two nested monitoring well sites located either in, or just outside of, the Los Angeles Forebay. In production wells, hexavalent chromium is present at concentrations above its historic MCL in a few wells located within and downgradient of the Los Angeles and Montebello Forebays in the Central Basin, and it is not observed in any of the West Coast Basin production wells.
- 1,4-Dioxane is present at concentrations above the NL in Central Basin nested monitoring and production wells within and between both the Los Angeles and Montebello Forebays, as well as south into the CBPA adjacent to the Los Angeles and San Gabriel Rivers. In the West Coast Basin, 1,4-Dioxane was detected above the NL in one of the nested monitoring well sites, but it was not detected in any of the production wells tested.
- The water quality of key constituents in untreated imported water recharged at the Montebello Forebay Spreading Grounds and treated imported water injected at the seawater barriers remains in compliance with regulatory limits. Average TDS, iron, manganese, chloride, nitrate, and arsenic concentrations in imported water used for

- recharge do not exceed their respective MCLs. Meanwhile, TCE, PCE, hexavalent chromium, and perchlorate were not detected in the untreated imported water.
- The water quality of key constituents in recycled water used for recharge at the Montebello Forebay Spreading Grounds and injection at the seawater intrusion barriers complies with regulatory limits and is monitored regularly to ensure its safe use.
- A total of 13 WRD nested groundwater monitoring wells across the CBWCB are designated for salt and nutrient (specifically, TDS, chloride, and nitrate) sampling and reporting as part of the SNMP monitoring program. Overall TDS and chloride concentrations are generally stable at most of the 13 key nested monitoring locations in the CBWCB. While a few individual zones show increasing trends, a comparable number show decreasing trends. Nitrate concentrations remain below the MCL at all 13 monitoring locations.
- In the Central Basin, TDS concentrations have been generally stable but exceed the WQO in the two shallowest zones at Huntington Park #1, and they exceed both the WQO and SMCL in the three deepest zones at Whittier #1 and the shallowest zone at Seal Beach #1. Chloride concentrations have also been relatively stable but exceed the WQO in the three deepest zones at Whittier #1, and they exceed both the WQO and SMCL in the shallowest zone at Seal Beach #1. TDS and chloride concentrations have increased in Zone 5 at Seal Beach #1 in recent years, and chloride has been observed at concentrations in excess of the WQO in that zone for the past four years. In each of the remaining six key nested monitoring well sites located in the Central Basin, TDS and chloride concentrations have remained relatively stable within each of the individual monitoring wells at concentrations below both the WQOs and SMCLs.
- In the West Coast Basin, average TDS and chloride concentrations exceed WQOs
 and SMCLs locally due to historical seawater intrusion. However, these
 concentrations are in general either relatively stable or are decreasing slightly and
 are anticipated to achieve WQOs in the future as a result of current groundwater
 management practices.

As shown by the data presented herein, groundwater in the WRD service area is of generally good quality and is suitable for use by the pumpers in the District, the stakeholders, and the public. Groundwater from localized areas with marginal to poor water quality can still be utilized but may require treatment prior to being used as a potable source.

SECTION 6 FUTURE ACTIVITIES

WRD will continue to update and augment its RGWMP to best serve the needs of the District, the pumpers, and the public. Some of the activities planned for the RGWMP in the current WY 2022-2023 are listed below.

- WRD continues refining the regional understanding of groundwater occurrence, movement, and quality. Water levels will continue to be recorded using automatic dataloggers to monitor groundwater elevation differences throughout the year, and in select wells telemetry systems will be used to transmit water level data to District computers. Conductivity sensors are being utilized at selected nested monitoring wells to track water quality changes and supplement the automated water level data.
- WRD will continue to sample groundwater from nested monitoring wells and analyze the samples for general water quality constituents. The focus will continue on constituents of interest to WRD, the pumpers, and other stakeholders, such as TCE, PCE, manganese, arsenic, perchlorate, hexavalent chromium and 1,4-Dioxane. As regulators consider new water quality standards for chemicals of emerging concern (CECs) that have not been comprehensively monitored in the past, WRD's nested monitoring well network is in good position to screen for emerging CECs in groundwater which may include pesticides, pharmaceuticals and personal care products, oil and gas field indicators, and other CECs.
- WRD will be working on refining the hydrogeologic conceptual model of the CBWCB to improve the framework for understanding the groundwater system and for use as a planning tool. WRD will use data from the RGWMP along with an update to the groundwater model that was developed and published by the USGS in 2021 as tools in its refinement of the conceptual model.
- Consistent with WRD's mission to provide, protect, and preserve safe and sustainable groundwater and as required by the State's Recycled Water Policy, a SNMP is in place and will continue to be implemented. Existing and planned

- implementation measures are and will continue to be protective of groundwater quality and its beneficial uses.
- Through the RGWMP, WRD will continue to collect CBWCB groundwater level data, track seasonal and long-term trends and provide the data to the CASGEM program.
- WRD will continue to monitor the quality of replenishment water sources to ensure the CBWCB are being recharged with high-quality water.
- WRD will continue to use the data generated by the RGWMP along with WRD's GIS capabilities to address current and potential water quality issues and groundwater replenishment in its service area.

SECTION 7

REFERENCES

Bookman-Edmonston Engineering, Inc., *Report on Program of Water Quality Monitoring*, January 1973.

California Department of Water Resources (DWR), Bulletin No. 104: Planned Utilization of the Ground Water Basins of the Coastal Plain of Los Angeles County, Appendix A—Ground Water Geology, 1961.

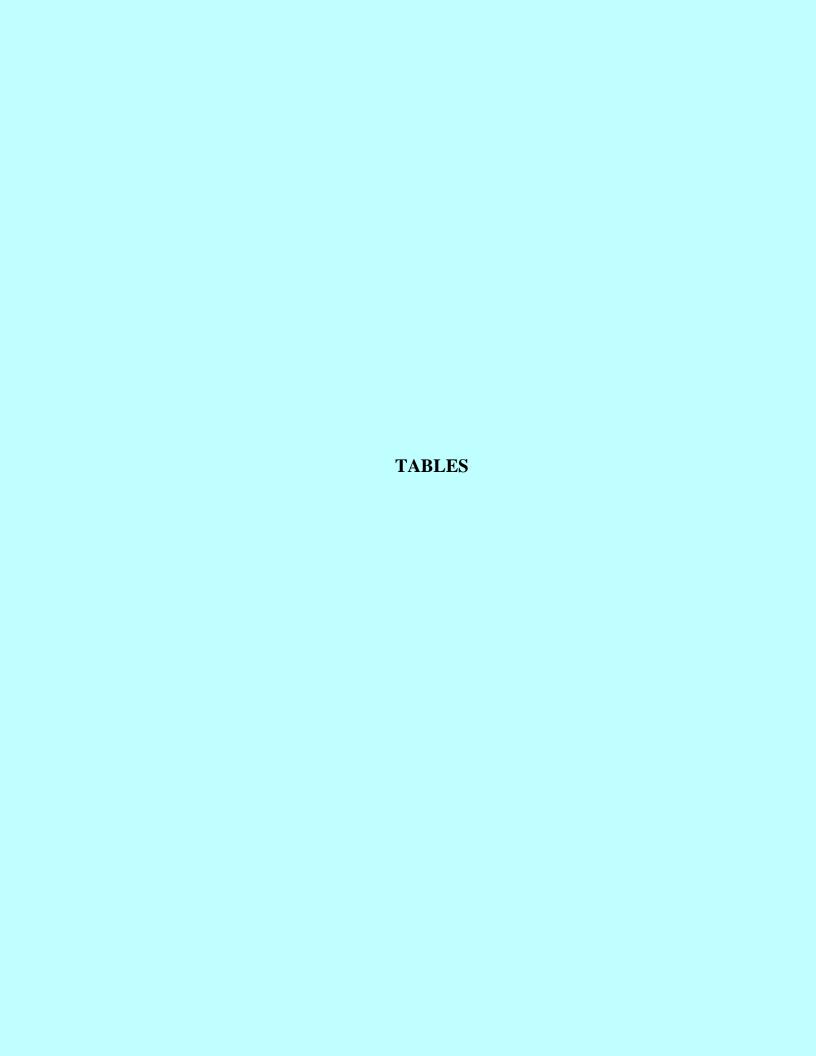
California Department of Water Resources (DWR), Bulletin No. 104: Planned Utilization of the Ground Water Basins of the Coastal Plain of Los Angeles County, Appendix B–Safe Yield Determinations, 1962.

Hem, John D., *Study and Interpretation of the Chemical Characteristics of Natural Water, Third Edition*, U.S. Geological Survey Water-Supply Paper 2254, 1992.

Metropolitan Water District of Southern California (MWD), Annual Report to Member Agencies, 2006.

Montgomery Watson, Report for West Coast Basin Desalinization Feasibility/Siting Study, February 1997.

Paulinski, S., ed.: Development of a Groundwater-Simulation Model in the Los Angeles Coastal Plain, Los Angeles County, California, United States Geological Survey Scientific Investigations Report 2021-5088; Reston, Virginia, 2021


Reichard, Eric G.; Land, Michael; Crawford, Steven M.; Johnson, Tyler; Everett, Rhett; Kulshan, Trayle V.; Ponti, Daniel J.; Halford, Keith J.; Johnson, Theodore A.; Paybins, Katherine S.; and Nishikawa, Tracey: *Geohydrology, Geochemistry, and Ground-Water Simulation-Optimization of the Central and West Coast Basins, Los Angeles County, California*, United States Geological Survey Water Resources Investigations Report 03-4065; Sacramento, California, 2003.

Trumpolt, Clayton, W.; Crain, Michael; Cullison, Geoffrey D.; Flanagan. Susan J. P.; Siegel, Lenny; Lathrop, Stephen: *Perchlorate: Sources, Uses, and Occurrence in the Environment*, Remediation, Wiley Periodicals., Inc., 2005.

Water Replenishment District of Southern California (WRD), Engineering Survey and Report, 2015.

Water Replenishment District of Southern California (WRD), *Alternative Analysis for the Central Basin – Los Angeles County, California*, December 16, 2016.

PAGE LEFT INTENTIONALLY BLANK

TABLE 1.1 CONSTRUCTION INFORMATION FOR WRD NESTED MONITORING WELLS

Page 1 of 8

Well Name	Zone	WRD ID Number	Depth of Well (feet)	Top of Perforation (feet)	Bottom of Perforation (feet)	Aquifer Designation ¹
Bell #1	1	102041	1750	1730	1750	Pico Formation ²
	2	102042	1215	1195	1215	Sunnyside
	3	102043	985	965	985	Sunnyside
	4	102044	635	615	635	Silverado
	5	102045	440	420	440	Jefferson
	6	102046	270	250	270	Gage
Bell Gardens #1	1	101954	1795	1775	1795	Sunnyside ²
	2	101955	1410	1390	1410	Sunnyside ²
	3	101956	1110	1090	1110	Sunnyside
	4	101957	875	855	875	Sunnyside
	5	101958	575	555	575	Silverado
	6	101959	390	370	390	Lynwood
Carson #1	1	100030	1010	990	1010	Silverado
	2	100031	760	740	760	Silverado
	3	100032	480	460	480	Lynwood
	4	100033	270	250	270	Gage ²
Carson #2	1	101787	1250	1230	1250	Sunnyside ²
	2	101788	870	850	870	Sunnyside ²
	3	101789	620	600	620	Silverado
	4	101790	470	450	470	Silverado
	5	101791	250	230	250	Lynwood
Carson #3	1	102075	1800	1600	1620	Pico Formation ²
	2	102076	1240	1220	1240	Sunnyside ²
	3	102077	1100	1080	1100	Silverado ²
	4	102078	890	870	890	Silverado
	5	102079	640	620	640	Silverado
	6	102080	380	360	380	Lynwood
Cerritos #1	1	100870	1215	1155	1175	Sunnyside ²
	2	100871	1020	1000	1020	Silverado ²
	3	100872	630	610	630	Lynwood
	4	100873	290	270	290	Gage
	5	100874	200	180	200	Artesia
	6	100875	135	125	135	Artesia
Cerritos #2	1	101781	1470	1350	1370	Sunnyside ²
	2	101782	935	915	935	Silverado
	3	101783	760	740	760	Lynwood ²
	4	101784	510	490	510	Hollydale
	5	101785	370	350	370	Gage
	6	101786	170	150	170	Artesia
Cerritos #3	1	103085	2120	2100	2120	Sunnyside
	2	103086	1670	1650	1670	Sunnyside
	3	103087	1395	1375	1395	Sunnyside
	4	103088	1050	1030	1050	Silverado
	5	103089	780	760	780	Hollydale
	6	103090	450	430	450	Hollydale
	7	103091	255	235	255	Gage

^{1 -} Unless otherwise noted, aquifer designations are based on DWR's Bulletin 104.2 - Aquifer designation is based on WRD's in-house interpretation.

TABLE 1.1
CONSTRUCTION INFORMATION FOR WRD NESTED MONITORING WELLS
Page 2 of 8

^{1 -} Unless otherwise noted, aquifer designations are based on DWR's Bulletin 104.

^{2 -} Aquifer designation is based on WRD's in-house interpretation.

TABLE 1.1 CONSTRUCTION INFORMATION FOR WRD NESTED MONITORING WELLS Page 3 of 8

Well Name	Zone	WRD ID Number	Depth of Well (feet)	Top of Perforation (feet)	Bottom of Perforation (feet)	Aquifer Designation ¹
Inglewood #1	1	100091	1400	1380	1400	Pico Formation ²
	2	100092	885	865	885	Pico Formation ²
	3	100093	450	430	450	Silverado
-	4	100094	300	280	300	Lynwood ²
-	5	100095	170	150	170	Gage
Inglewood #2	1	100824	860	800	840	Pico Formation ²
	2	100825	470	450	470	Silverado ²
	3	100826	350	330	350	Lynwood ²
-	4	100827	245	225	245	Gage ²
Inglewood #3	1	102138	1940	1900	1940	Pico Formation ²
	2	102139	1460	1440	1460	Pico Formation ²
	3	102140	1275	1255	1275	Pico Formation ²
	4	102141	910	890	910	Pico Formation ²
	5	102142	560	540	560	Silverado
	6	102143	390	370	390	Lynwood
	7	102144	265	245	265	Gage
Lakewood #1	1	100024	1009	989	1009	Sunnyside
Late Wood W1	2	100025	660	640	660	Lynwood
	3	100026	470	450	470	Hollydale
	4	100027	300	280	300	Gage
	5	100027	160	140	160	Artesia
	6	100029	90	70	90	Bellflower
Lakewood #2	1	102151	2000	1960	2000	Sunnyside ²
ZaiteWedd #2	2	102152	1760	1740	1760	Sunnyside ²
	3	102153	1320	1300	1320	Sunnyside ²
	4	102154	1015		1015	Silverado
	5		710	690	710	Lynwood
	6	102155 102156	575	555	575	Jefferson
	7	102157	275	255	275	Gage
	8	102158	120	110	120	Artesia
La Mirada #1	1	100876	1150	1130	1150	Sunnyside
La milada // i	2	100877	985	965	985	Silverado ²
	3	100878	710	690	710	Lynwood ²
	4	100879	490	470	490	Jefferson ²
	5	100879	245	225	245	Gage
Lawndale #1	1	102171	1400	1360	1400	Pico Formation ²
Law noute #1	2	102171	905	885	905	Sunnyside ²
	3	102173	635	615	635	Silverado
	4	102174	415	395	415	Silverado
	5	102174	310	290	310	Lynwood
	6	102176	190	170	190	Gardena
Lomita #1	1	100818	1340	1240	1260	Pico Formation ²
Zomia // 1	2	100819	720	700	720	Silverado
	3	100819	570	550	570	Silverado
	4	100820	420	400	420	Lynwood
	5	100821	240	220	240	Gage ²
	J	100022	Z 1 U	220	∠+0	Gage ²

^{1 -} Unless otherwise noted, aquifer designations are based on DWR's Bulletin 104.2 - Aquifer designation is based on WRD's in-house interpretation.

TABLE 1.1 CONSTRUCTION INFORMATION FOR WRD NESTED MONITORING WELLS Page 4 of 8

Well Name	Zone	WRD ID Number	Depth of Well (feet)	Top of Perforation (feet)	Bottom of Perforation (feet)	Aquifer Designation ¹
Long Beach #1	1	100920	1470	1430	1450	Sunnyside ²
	2	100921	1250	1230	1250	Sunnyside
	3	100922	990	970	990	Silverado ²
	4	100923	619	599	619	Lynwood ²
	5	100924	420	400	420	Jefferson ²
	6	100925	175	155	175	Artesia
Long Beach #2	1	101740	1090	970	990	Sunnyside
	2	101741	740	720	740	Silverado ²
	3	101742	470	450	470	Silverado
	4	101743	300	280	300	Lynwood
	5	101744	180	160	180	Gage
	6	101745	115	95	115	Gaspur
Long Beach #3	1	101751	1390	1350	1390	Pico Formation ²
	2	101752	1017	997	1017	Silverado
	3	101753	690	670	690	Silverado ²
	4	101754	550	530	550	Silverado ²
	5	101755	430	410	430	Lynwood
Long Beach #4	1	101759	1380	1200	1220	Pico Formation ²
	2	101760	820	800	820	Sunnyside ²
Long Beach #6	1	101792	1530	1490	1510	Pico Formation ²
	2	101793	950	930	950	Sunnyside
	3	101794	760	740	760	Sunnyside
	4	101795	500	480	500	Silverado
	5	101796	400	380	400	Lynwood
	6	101797	240	220	240	Gage
Long Beach #8	1	101819	1495	1435	1455	Pico Formation ²
	2	101820	1040	1020	1040	Sunnyside ²
	3	101821	800	780	800	Silverado ²
	4	101822	655	635	655	Silverado ²
	5	101823	435	415	435	Silverado ²
	6	101824	185	165	185	Lynwood ²
Los Angeles #1	1	100926	1370	1350	1370	Sunnyside ²
	2	100927	1100	1080	1100	Sunnyside
	3	100928	940	920	940	Sunnyside
	4	100929	660	640	660	Silverado
	5	100930	370	350	370	Lynwood ²
Los Angeles #2	1	102003	1370	1330	1370	Pico Formation ²
	2	102004	730	710	730	Sunnyside
	3	102005	525	505	525	Silverado
	4	102006	430	410	430	Lynwood
	5	102007	265	245	265	Hollydale ²
	6	102008	155	135	155	Gardena

^{1 -} Unless otherwise noted, aquifer designations are based on DWR's Bulletin 104.2 - Aquifer designation is based on WRD's in-house interpretation.

TABLE 1.1 CONSTRUCTION INFORMATION FOR WRD NESTED MONITORING WELLS Page 5 of 8

Well Name	Zone	WRD ID Number	Depth of Well (feet)	Top of Perforation (feet)	Bottom of Perforation (feet)	Aquifer Designation ¹
Los Angeles #3	1	102069	1570	1210	1230	Pico Formation ²
	2	102070	895	875	895	Sunnyside ²
	3	102071	725	705	725	Sunnyside ²
	4	102072	570	550	570	Sunnyside
	5	102073	350	330	350	Silverado ²
	6	102074	210	190	210	Gage ²
Los Angeles #4	1	102131	1780	1740	1780	Pico Formation ²
	2	102132	1230	1190	1230	Sunnyside ²
	3	102133	740	720	740	Sunnyside
	4	102134	510	490	510	Silverado
	5	102135	375	355	375	Lynwood
	6	102136	255	235	255	Gage
Los Angeles #5	1	103029	2000	1960	2000	Pico Formation ²
	2	103030	1255	1235	1255	Sunnyside ²
	3	103031	770	750	770	Sunnyside
	4	103032	575	555	575	Sunnyside
	5	103033	450	430	450	Silverado
	6	103034	235	215	235	Lynwood ²
	7	103035	105	95	105	Exposition
Los Angeles #6	1	103047	600	580	600	Pico Formation ²
	2	103048	440	420	440	Sunnyside
	3	103049	365	345	365	Silverado
	4	103050	275	255	275	Lynwood
Lynwood #1	1	102211	2900	2880	2900	Pico Formation ²
	2	102212	2450	2430	2450	Pico Formation ²
	3	102213	1670	1650	1670	Sunnyside ²
	4	102214	1465	1445	1465	Sunnyside ²
	5	102215	1220	1200	1220	Silverado ²
	6	102216	900	880	900	Silverado ²
	7	102217	660	640	660	Lynwood
	8	102218	335	315	335	Gardena
	9	102219	180	160	180	Gaspur
Manhattan Beach #1	1	102081	1990	1950	1990	Pico Formation ²
	2	102082	1590	1570	1590	Pico Formation ²
	3	102083	1270	1250	1270	Pico Formation ²
	4	102084	885	865	885	Sunnyside ²
	5	102085	660	640	660	Sunnyside ²
	6	102086	340	320	340	Silverado
	7	102087	200	180	200	Gage
Montebello #1	1	101770	980	900	960	Pico Formation ²
	2	101771	710	690	710	Sunnyside
	3	101772	520	500	520	Sunnyside
	4	101773	390	370	390	Silverado
	5	101774	230	210	230	Lynwood
	6	101775	110	90	110	Gage

^{1 -} Unless otherwise noted, aquifer designations are based on DWR's Bulletin 104.2 - Aquifer designation is based on WRD's in-house interpretation.

TABLE 1.1 CONSTRUCTION INFORMATION FOR WRD NESTED MONITORING WELLS Page 6 of 8

Well Name	Zone	WRD ID Number	Depth of Well (feet)	Top of Perforation (feet)	Bottom of Perforation (feet)	Aquifer Designation ¹
Montebello #2	1	103080	780	745	780	Pico Formation
	2	103081	435	415	435	Pico Formation
	3	103082	260	250	260	Sunnyside
	4	103083	200	180	200	Sunnyside
	5	103084	115	100	115	Gage
Norwalk #1	1	101814	1420	1400	1420	Sunnyside
	2	101815	1010	990	1010	Silverado
	3	101816	740	720	740	Lynwood
	4	101817	450	430	450	Hollydale
	5	101818	240	220	240	Gage
Norwalk #2	1	101942	1480	1460	1480	Pico Formation ²
	2	101943	1280	1260	1280	Pico Formation ²
	3	101944	980	960	980	Sunnyside ²
	4	101945	820	800	820	Sunnyside ²
	5	101946	500	480	500	Silverado
	6	101947	256	236	256	Gardena
Paramount #1	1	103093	2100	2080	2100	Pico Formation ²
	2	103094	1720	1700	1720	Pico Formation ²
	3	103095	1210	1190	1210	Pico Formation ²
	4	103096	945	925	945	Sunnyside
	5	103097	640	620	640	Lynwood
	6	103098	440	420	440	Hollydale
	7	103099	235	215	235	Exposition
Pico #1	1	100001	900	860	900	Pico Formation ²
	2	100002	480	460 480	480	Silverado
	3	100003	400	380	400	Silverado
	4	100004	190	170	190	Gardena ²
Pico #2	1	100085	1200	1180	1200	Sunnyside ²
	2	100086	850	830	850	Sunnyside ²
	3	100087	580	560	580	Sunnyside
	4	100088	340	320	340	Silverado
	5	100089	255	235	255	Lynwood
	6	100090	120	100	120	Gaspur/Gage ²
PM-2 Police Station	1	102237	665	645	665	Sunnyside ²
	2	102238	540	520	540	Silverado
	3	102239	390	370	390	Lynwood/Silverado ²
	4	102240	260	240	260	Lynwood
PM-3 Madrid	1	100034	685	640	680	Sunnyside ²
	2	100035	525	480	520	Silverado
	3	100036	285	240	280	Lynwood
	4	100037	190	145	185	Gardena
PM-4 Mariner	1	100038	720	670	710	Sunnyside ²
	2	100039	550	500	540	Silverado
	3	100040	390	340	380	Lynwood
	4	100041	250	200	240	Gardena

^{1 -} Unless otherwise noted, aquifer designations are based on DWR's Bulletin 104.2 - Aquifer designation is based on WRD's in-house interpretation.

TABLE 1.1 CONSTRUCTION INFORMATION FOR WRD NESTED MONITORING WELLS Page 7 of 8

Well Name	Zone	WRD ID Number	Depth of Well (feet)	Top of Perforation (feet)	Bottom of Perforation (feet)	Aquifer Designation ¹
PM-5 Columbia Park	1	102047	1480	1360	1380	Pico Formation ²
-	2	102048	960	940	960	Pico Formation ²
	3	102049	790	770	790	Sunnyside ²
	4	102050	600	580	600	Silverado
	5	102051	340	320	340	Lynwood ²
	6	102052	160	140	160	Gardena
PM-6 Madrona Marsh	1	102053	1235	1195	1235	Pico Formation ²
	2	102054	925	905	925	Sunnyside ²
	3	102055	790	770	790	Sunnyside ²
	4	102056	550	530	550	Silverado
	5	102057	410	390	410	Lynwood
	6	102058	260	240	260	Lynwood
Rio Hondo #1	1	100064	1150	1110	1130	Pico Formation ²
	2	100065	930	910	930	Sunnyside ²
	3	100066	730	710	730	Sunnyside
	4	100067	450	430	450	Silverado
	5	100068	300	280	300	Hollydale
	6	100069	160	140	160	Gardena
Seal Beach #1	1	102062	1485	1345	1365	Sunnyside ²
	2	102063	1180	1160	1180	Sunnyside ²
	3	102064	1040	1020	1040	Sunnyside ²
	4	102065	795	775	795	Silverado
	5	102066	625	605	625	Lynwood ²
	6	102067	235	215	235	Gage
	7	102068	70	60	70	Artesia
South Gate #1	1	100893	1460	1440	1460	Sunnyside ²
	2	100894	1340	1320	1340	Sunnyside ²
	3	100895	930	910	930	Silverado ²
	4	100896	585	565	585	Lynwood
	5	100897	250	220	240	Exposition ²
South Gate #2	1	102180	1760	1740	1760	Sunnyside ²
	2	102181	1430	1410	1430	Sunnyside ²
	3	102182	1082	1062	1082	Sunnyside
	4	102183	690	670	690	Silverado ²
	5	102184	430	410	430	Hollydale
	6	102185	225	205	225	Gaspur ²
Westchester #1	1	101776	860	740	760	Pico Formation ²
	2	101777	580	560	580	Sunnyside ²
	3	101778	475	455	475	Sunnyside ²
	4	101779	330	310	330	Silverado
	5	101780	235	215	235	Silverado
Whittier #1	1	101735	1298	1180	1200	Pico Formation ²
	2	101736	940	920	940	Pico Formation ²
	3	101737	620	600	620	Sunnyside
	4	101738	470	450	470	Silverado
	5	101739	220	200	220	Jefferson

^{1 -} Unless otherwise noted, aquifer designations are based on DWR's Bulletin 104.2 - Aquifer designation is based on WRD's in-house interpretation.

TABLE 1.1 CONSTRUCTION INFORMATION FOR WRD NESTED MONITORING WELLS

Page 8 of 8

Well Name	Zone	WRD ID Number	Depth of Well (feet)	Top of Perforation (feet)	Bottom of Perforation (feet)	Aquifer Designation ¹
Whittier #2	1	101936	1390	1370	1390	Pico Formation ²
	2	101937	1110	1090	1110	Pico Formation ²
	3	101938	675	655	675	Sunnyside
	4	101939	445	425	445	Silverado
	5	101940	335	315	335	Silverado
	6	101941	170	150	170	Gage ²
Whittier Narrows #1	1	100046	810	749	769	Sunnyside
	2	100047	810	610	629	Sunnyside
	3	100048	810	463	482.5	Sunnyside
	4	100049	810	393	402	Silverado
	5	100050	810	334	343.5	Silverado
	6	100051	810	273	282.5	Lynwood
	7	100052	810	234	243	Lynwood
	8	100053	810	163	173	Gardena
	9	100054	810	95	104.5	Gaspur
Whittier Narrows #2	1	100055	720	659	678.4	Pico Formation ²
	2	100056	720	579	598.2	Pico Formation ²
	3	100057	720	469	488.2	Pico Formation ²
	4	100058	720	419	428.2	Pico Formation ²
	5	100059	720	329	338.3	Pico Formation ²
	6	100060	720	263	273.3	Lynwood
	7	100061	720	214	223.3	Lynwood
	8	100062	720	136	145.3	Gardena ²
	9	100063	720	91	100.3	Gardena
Willowbrook #1	1	100016	905	885	905	Sunnyside ²
	2	100017	520	500	520	Silverado
	3	100018	380	360	380	Lynwood
	4	100019	220	200	220	Gage
Wilmington #1	1	100070	1040	915	935	Sunnyside ²
	2	100070	800	780	800	Silverado
	3	100071	570	550	570	Silverado
	4	100072	245	225	245	Lynwood
	5	100073	140	120	140	Gage
Wilmington #2	1	100075	1030	950	970	Sunnyside ²
w mmigwn #2	2	100073	775	755	775	Silverado
	3	100076	560	540	560	Silverado
	4	100077	410	390	410	Lynwood
	5	100078	140	120	140	Gage

^{1 -} Unless otherwise noted, aquifer designations are based on DWR's Bulletin 104.2 - Aquifer designation is based on WRD's in-house interpretation.

TABLE 1.2 CONSTRUCTION INFORMATION FOR WELLS NOT LISTED IN TABLE 1.1 THAT ARE USED TO PREPARE FIGURES 2.1 AND 2.2

Well Name	Zone	WRD ID Number	Reference Point Elevation (feet msl)	Depth of Well (feet)	Top of Perforation (feet)	Bottom of Perforation (feet)	Date of Measurement	Groundwater Elevation (feet msl)	Aquifer Designation ¹
Hawkins #1	3	102233	147.75	296	286	296	9/22/2022	29.85	Lynwood
Koontz #1	1	102226	135.17	491	481	491	9/22/2022	20.57	Lynwood
LADWP MW-01	2	102251	133.91	580	510	560	9/14/2022	-20.67	Silverado
La Habra Heights #1	1	102164	151.00	570	540	560	9/19/2022	72.04	Sunnyside
LongBeach #7	2	101899	16.35	670	650	670	9/20/2022	-41.61	Silverado
Sepulveda #1	1	201058	90.00	550	370	530	9/23/2022	1.94	Silverado

^{1 -} Aquifer designations are based on DWR's Bulletin 104.

PAGE LEFT INTENTIONALLY BLANK

TABLE 2.1 GROUNDWATER ELEVATIONS, WATER YEAR 2021 - 2022 Page 1 of 11

	ZONE 1	ZONE 2	ZONE 3	ZONE 4	ZONE 5	ZONE 6	ZONE 7	ZONE 8	ZONE 9
Bell #1	ZOI\E I	ZONE 2	ZOINE 3	ZOILE 4	ZONE 3	ZONE		rence Point Ele	
Depth of Screen Interval	1730-1750	1195-1215	965-985	615-635	420-440	250-270			
Aquifer Name ¹	Pico Form. ²	Sunnyside	Sunnyside	Silverado	Jefferson	Gage			
12/7/2021	-28.58	-37.67	-23.95	-27.74	-18.94	6.97			
3/10/2022	-24.01	-27.65	-18.21	-21.48	-13.65	7.90			
3/15/2022	-24.42	-27.11	-18.30	-21.24	-13.96	7.63			
6/8/2022	-26.30	-32.21	-18.63	-21.93	-14.81	7.07			
8/23/2022	-31.04	-36.37	-22.97	-26.12	-17.97	5.84			
9/22/2022	-25.84	-29.39	-23.45	-26.81	-19.40	5.55			
Bell Gardens #1	20.0.	27.07	200	20.01	191.10	0.00	Refe	rence Point Ele	vation: 121.0
Depth of Screen Interval	1775-1795	1390-1410	1090-1110	855-875	555-575	370-390	71070	2000 1 0000 200	
Aquifer Name ¹	Sunnyside ²	Sunnyside ²	Sunnyside	Sunnyside	Silverado	Lynwood			
10/19/2021	-7.72	-7.69	-4.78	-0.91	3.72	3.04			
12/7/2021	-8.27	-7.86	-4.88	-0.72	4.51	4.38			
3/17/2022	-2.02	-0.50	2.50	5.68	9.25	7.94			
5/23/2022	-0.60	0.22	2.99	5.89	9.24	7.54			
6/7/2022	-0.94	-0.42	2.35	4.91	8.88	7.10			
9/22/2022	-6.11	-6.11	-2.92	0.79	5.10	4.13			
Carson #1	-0.11	-0.11	-2.72	0.77	5.10	4.13	Re	ference Point E	levation: 26.8
Depth of Screen Interval	990-1010	740-760	460-480	250-270	l		Re	referee Form E	ievation. 20.c
Aquifer Name 1	Silverado	Silverado	Lynwood	Gage ²					
10/15/2021	-37.49	-36.80	-8.30	-7.09					
11/1/2021	-37.13	-36.38	-8.25	-7.09 -7.10					
		-37.08	-8.40						
12/3/2021	-37.61	-37.08	-8.49	-7.19 -7.25					
12/13/2021 2/22/2022	-39.35 -40.53	-38.72	-8.34	-7.23 -7.14					
	+		-8.46	-7.14					
3/17/2022	-42.83	-41.72							
4/11/2022	-44.49	-43.09	-8.49	-7.19					
4/26/2022	-44.16	-42.91	-8.69	-7.35					
5/23/2022	-42.89	-41.54	-8.60	-7.31					
6/10/2022	-44.42	-43.14	-8.61	-7.34					
7/21/2022	-45.82	-44.43	-9.29	-7.83					
8/18/2022	-47.78	-46.39	-9.74	-8.23					
8/24/2022	-47.03	-45.64	-9.85	-8.25					
9/19/2022	-43.74	-42.44	-9.53	-8.16			_		
Carson #2	T						Re	ference Point E	levation: 43.0
Depth of Screen Interval	1230-1250	850-870	600-620	450-470	230-250				
Aquifer Name 1	Sunnyside ²	Sunnyside ²	Silverado	Silverado	Lynwood				
10/20/2021	-26.26	-21.81	-21.56	-18.64	-16.45				
12/16/2021	-26.67	-23.21	-22.9	-19.48	-17.28				
3/7/2022	-27.68	-22.48	-22.23	-19.24	-17.14				
5/3/2022	-28.20	-22.44	-22.16	-19.26	-17.28				
6/15/2022	-28.24	-22.96	-22.63	-19.66	-17.56				
9/23/2022	-28.77	-22.70	-22.44	-19.54	-17.47				
Carson #3	1	ı		ı	ı		Re	ference Point E	levation: 20.1
Depth of Screen Interval	1600-1620	1220-1240	1080-1100	870-890	620-640	360-380			
Aquifer Name 1	Pico Form. ²	Sunnyside ²	Silverado ²	Silverado	Silverado	Lynwood			
10/18/2021	-25.28	-31.37	-30.76	-32.32	-32.24	-10.60			
12/16/2021	-25.37	-31.21	-30.82	-33.18	-33.13	-10.84			
3/7/2022	-25.42	-31.93	-31.84	-34.53	-34.43	-10.90			
4/26/2022	-25.33	-31.84	-30.69	-33.09	-32.55	-10.50			
6/15/2022	-25.52	-31.90	-30.82	-33.82	-33.54	-10.87			
9/7/2022	-25.85	-33.03	-31.71	-34.50	-34.03	-11.18			
9/19/2022	-25.81	-32.74	-31.49	-33.96	-33.53	-11.14			

- 1 Unless otherwise noted, aquifer designations are based on DWR's Bulletin 104.
- 2 Aquifer designation is based on WRD's in-house interpretation.
- Shaded cell indicates the zone and measurement used in Figures 2.1 and 2.2.

TABLE 2.1 GROUNDWATER ELEVATIONS, WATER YEAR 2021 - 2022 Page 2 of 11

	ZONE 1	ZONE 2	ZONE 3	ZONE 4	ZONE 5	ZONE 6	ZONE 7	ZONE 8	ZONE 9
Cerritos #1	201121	201122	201120	20112	201120	ZOTIZ 0		ference Point E	
Depth of Screen Interval	1155-1175	1000-1020	610-630	270-290	180-200	125-135	110		e vaccini ibibi
Aquifer Name ¹	Sunnyside ²	Silverado ²	Lynwood	Gage	Artesia	Artesia			
12/7/2021	-40.47	-45.92	-24.46	18.86	20.54	20.63			
3/8/2022	-32.11	-36.41	-17.82	20.91	22.21	22.30			
4/21/2022	-28.50	-30.11	-17.48	20.73	21.83	21.88			
6/13/2022	-36.03	-41.65	-20.99	20.30	21.75	21.83			
9/13/2022	-41.82	-48.41	-27.95	17.61	19.76	19.38			
Cerritos #2		1,2112					Re	ference Point E	levation: 76.4
Depth of Screen Interval	1350-1370	915-935	740-760	490-510	350-370	150-170			, , , , , , , , , , , , , , , , , , , ,
Aquifer Name ¹	Sunnyside ²	Silverado	Lynwood ²	Hollydale	Gage	Artesia			
12/7/2021	-27.80	-33.99	-19.16	-3.73	16.29	22.22			
3/8/2022	-19.51	-26.30	-14.77	-0.72	17.48	22.85			
4/20/2022	-15.36	-20.63	-12.68	0.01	17.76	23.00			
6/13/2022	-19.53	-30.49	-16.65	-1.82	16.74	22.76			
9/1/2022	-24.15	-33.51	-26.10	-6.48	15.16	21.97			
9/13/2022	-24.16	-33.31	-25.90	-6.33	14.95	21.85			
Cerritos #3	-24.10	-33.31	-23.90	-0.55	14.55	21.03	R	eference Point E	levation: 64.2
Depth of Screen Interval	2100-2120	1650-1670	1375-1395	1030-1050	760-780	430-450	235-255	I OINT L	
Aquifer Name ¹	Sunnyside	Sunnyside	Sunnyside	Silverado	Hollydale	Hollydale	Gage		
12/6/2021	13.20	-28.64	-21.98	-29.36	-46.23	-22.96	15.52		
2/10/2022	15.70	-21.35	-12.87	-29.30	-40.23	-20.99	16.87		
3/8/2022	16.87	-18.36		-22.30	-40.13		16.92		
		-12.38	-11.51 -8.90	-21.28	-40.20 -40.48	-20.85 -22.87	16.92		
6/13/2022 7/18/2022	21.35 20.40	-12.38	-8.90	-18.31	-40.48 -44.69	-25.77	16.09		
9/13/2022	17.77	-17.29	-12.80	-22.23	-46.78	-26.95	15.17		
Chandler #3	17.77	-19.14	-13.63	-22.23	-40.78	-20.93		erence Point Ele	vertion, 156 O
Depth of Screen Interval	341-363	165-192		I	I		Ken	erence I omit Ere	valion. 150.0
Aquifer Name ¹	Silverado ²	Lynwood ²							
3/17/2022	-8.97	-8.90							
4/14/2022	-9.11	-9.00							
6/14/2022	-9.11	-9.37							
9/8/2022	-9.49	-9.77							
9/21/2022	-9.49	-9.77							
9/21/2022 Commerce #1	-9.49	-9.40					D - 6	D.: Els	
	1220 1200	040.000	760 780	570 500	225 245	205 225	Kei	erence Point Ele	evation: 159.3
Depth of Screen Interval Aquifer Name 1	1330-1390 Pico Form. ²	940-960	760-780	570-590	325-345	205-225			
			Sunnyside ²		Jefferson	Hollydale			
10/21/2021	22.82	19.39	15.76	-19.84	-18.88	22.54			
12/10/2021	22.53	19.19	15.68	-18.47	-16.17	22.56			
3/8/2022	22.53	21.56	18.33	-9.81	-11.05	22.58			
4/18/2022	22.59	20.76	17.43	-14.58	-14.29	22.08			
6/7/2022	24.35	19.49	16.08	-13.87	-11.09	22.62			
9/30/2022	21.92	17.85	14.41	-18.72	-17.92	21.76		c = =	
Compton #1	1250 1200	1150 1150	000.022	460 400	205 225		Re	ference Point E	ievation: 68.8
Depth of Screen Interval	1370-1390	1150-1170	800-820	460-480	305-325				
Aquifer Name 1	Sunnyside ²	Sunnyside ²	Silverado	Hollydale	Gage				
10/20/2021	-63.29	-63.07	-31.12	-31.23	-17.37				
12/15/2021	-61.89	-61.63	-29.14	-28.61	-14.64				
3/17/2022	-47.05	-46.92	-25.19	-25.86	-12.14				
4/4/2022	-39.39	-39.31	-24.77	-17.03	-10.74				
6/14/2022	-49.16	-48.99	-26.16	-28.21	-13.70				
8/23/2022	-56.26	-55.53	-29.72	-30.87	-15.79				
9/22/2022	-56.9	-56.69	-28.43	-30.58	-16.12				

- 1 Unless otherwise noted, aquifer designations are based on DWR's Bulletin 104.
- **2** Aquifer designation is based on WRD's in-house interpretation.
- Shaded cell indicates the zone and measurement used in Figures 2.1 and 2.2.

TABLE 2.1 GROUNDWATER ELEVATIONS, WATER YEAR 2021 - 2022 Page 3 of 11

	ZONE 1	ZONE 2	ZONE 3	ZONE 4	ZONE 5	ZONE 6	ZONE 7	ZONE 8	ZONE 9
Compton #2	ZOIL I	ZOTE Z	LOTTE 5	ZOTIL T	LOTES	ZOTE 0		ference Point E	
Depth of Screen Interval	1479-1495	830-850	585-605	380-400	295-315	150-170			, , , ,
Aquifer Name ¹	Pico Form. ²	Sunnyside ²	Silverado	Lynwood 2	Hollydale ²	Exposition			
12/16/2021	-33.50	-51.53	-45.53	-45.32	-39.39	-33.44			
3/15/2022	-31.79	-48.13	-44.18	-43.98	-37.58	-32.30			
5/20/2022	-45.14	-45.14	-46.67	-46.12	-37.83	-31.85			
6/15/2022	-23.89	-46.15	-44.43	-44.20	-37.93	-32.46			
9/22/2022	-27.62	-48.99	-47.31	-46.33	-38.43	-33.08			
Downey #1	27.02	.0.55	.,,,51	10.55	20.12	22.00	Re	ference Point E	levation: 99.3
Depth of Screen Interval	1170-1190	940-960	580-600	370-390	250-270	90-110			
Aquifer Name ¹	Sunnyside ²	Sunnyside ²	Silverado	Jefferson	Gage	Gaspur			
12/13/2021	-13.20	-10.80	-3.81	-0.94	22.11	25.84			
3/9/2022	-4.61	-3.25	0.44	1.26	22.81	26.04			
4/12/2022	-3.50	-2.33	1.62	2.65	22.75	25.93			
6/13/2022	-6.06	-5.41	-1.69	-0.25	22.43	25.94			
7/25/2022	-9.58	-8.27	-3.85	-2.90	22.10	25.86			
9/23/2022	-9.53	-7.96	-4.55	-3.66	21.63	25.70			
Gardena #1	7.55	-7.50	-4.55	-5.00	21.03	23.70	Re	ference Point E	levation: 84.2
Depth of Screen Interval	970-990	445-465	345-365	120-140	1		Re	referee 1 out E	icvation. 64.2
Aquifer Name ¹	Pico Form. ²	Silverado	Lynwood ²	Gage					
12/15/2021	-29.40	-31.99	-28.35	-2.51					
3/15/2022	-29.40	-34.44	-28.33	-2.31					
4/20/2022	-29.40	-34.44	-27.41	-2.30					
6/15/2022	-29.21	-31.44	-27.58	-2.11					
9/6/2022	-28.81		-26.75	-2.01					
9/0/2022	-28.84	-31.04	-26.73	-2.03					
Gardena #2	-20.04	-31.18	-20.00	-2.14			D.	fanan as Daint E	larvation, 20.4
	1275 1225	770-790	610-630	240.260	235-255		Re	ference Point E	levation: 29.4
Depth of Screen Interval Aquifer Name 1	1275-1335 Pico Form. ²			340-360					
12/17/2021		Silverado -39.95	Silverado	Lynwood -10.83	Gardena				
	-26.64		-41.40		-1.88				
3/16/2022	-27.04	-38.14	-39.24	-11.30	-2.15				
5/2/2022	-26.72	-35.65	-36.74	-10.45	-2.00				
6/8/2022	-26.45	-36.51	-37.49	-10.49	-2.01				
9/9/2022	-27.12	-37.60	-38.75	-11.28	-2.30				
9/19/2022	-27.17	-37.27	-38.43	-11.19	-2.34			C Dist	1 . 00.0
Hawthorne #1	040.050			100.400	240.250	440.400	Re	eference Point E	devation: 88.9
Depth of Screen Interval	910-950	710-730	520-540	400-420	240-260	110-130			
Aquifer Name 1	Pico Form. ²	Sunnyside ²	Sunnyside ²	Silverado	Lynwood	Gage			
10/18/2021	-26.02	1.07	1.44	1.50	3.57	8.59			
12/15/2021	-24.22	1.68	1.98	2.00	3.88	8.38			
3/10/2022	-23.81	1.53	1.90	1.99	3.98	8.78			
4/6/2022	-22.79	1.99	2.32	2.46	4.30	8.83			
6/7/2022	-21.38	-0.22	0.15	0.26	2.94	8.87			
9/15/2022	-21.25	-0.71	-0.37	-0.25	2.55	8.88			
Huntington Park #1	T	1	l .		1		Refe	erence Point Ele	evation: 179.4
Depth of Screen Interval	890-910	690-710	420-440	275-295	114-134				
Aquifer Name 1	Silverado	Lynwood	Hollydale	Gage	Gaspur				
10/18/2021	-32.61	-36.60	-22.62	7.46	Dry				
12/13/2021	-32.36	-35.51	-21.94	-7.84	Dry				
3/18/2022	-30.38	-33.49	-19.63	7.39	Dry				
5/19/2022	-31.01	-34.91	-21.62	7.28	Dry				
6/16/2022	-30.87	-34.47	-21.57	7.17	Dry				
9/16/2022	-33.83	-37.50	-23.15	6.28	Dry				
9/22/2022	-33.84	-37.19	-22.25	6.18	Dry				

- 1 Unless otherwise noted, aquifer designations are based on DWR's Bulletin 104.
- 2 Aquifer designation is based on WRD's in-house interpretation.
- Shaded cell indicates the zone and measurement used in Figures 2.1 and 2.2.

TABLE 2.1 GROUNDWATER ELEVATIONS, WATER YEAR 2021 - 2022 Page 4 of 11

	ZONE 1	ZONE 2	ZONE 3	ZONE 4	ZONE 5	ZONE 6	ZONE 7	ZONE 8	ZONE 9
Inglewood #1							ı	erence Point Ele	
Depth of Screen Interval	1380-1400	865-885	430-450	280-300	150-170		itei	crence i oint Ex	Vation: 112.02
Aquifer Name ¹	Pico Form. ²	Pico Form. ²	Silverado	Lynwood ²	Gage				
10/18/2021	-25.69	-25.80	-15.75	-0.34	5.85				
12/15/2021	-25.60	-25.48	-15.05	-0.31	5.54				
3/17/2022	-25.09	-24.4	-14.21	-0.10	5.85				
3/24/2022	-25.00	-24.28	-14.12	-0.06	5.89				
6/10/2022	-24.31	-23.8	-13.36	-0.08	5.88				
8/25/2022	-23.96	-23.11	-12.69	-0.15	5.84				
9/15/2022	-25.49	-23.02	-12.46	-0.11	5.93				
Inglewood #2							Ref	erence Point Ele	evation: 219.82
Depth of Screen Interval	800-840	450-470	330-350	225-245					
Aquifer Name ¹	Pico Form. ²	Silverado ²	Lynwood ²	Gage ²					
12/17/2021	-23.49	-15.79	-1.66	2.20					
3/14/2022	-24.60	-15.80	-1.61	2.27					
6/10/2022	-25.12	-15.88	-1.50	2.17					
9/14/2022	-26.32	-16.30	-1.62	2.37					
Inglewood #3							Re	ference Point E	levation: 72.20
Depth of Screen Interval	1900-1940	1440-1460	1255-1275	890-910	540-560	370-390	245-265		, , , , , , ,
Aquifer Name ¹	Pico Form. ²	Pico Form. ²	Pico Form. ²	Pico Form. ²	Silverado	Lynwood	Gage		
12/15/2021	-35.61	-26.23	-28.58	-24.76	-24.24	-0.51	6.75		
3/17/2022	-35.65	-25.95	-27.30	-24.02	-23.56	-0.31	7.16		
3/30/2022	-35.65	-25.88	-27.21	-23.68	-23.23	-0.15	7.13		
6/10/2022	-35.40	-25.88	-26.52	-21.92	-21.66	-0.52	7.20		
8/31/2022	-35.77	-25.94	-25.91	-22.08	-21.41	-0.88	7.23		
9/14/2022	-35.77	-25.73	-25.84	-21.33	-21.05	-0.85	7.21		
Lakewood #1	33.77	20.75	25.0.			evation: 53.87		and 53.14 (Zon	es 1, 2, 3 and 4)
Depth of Screen Interval	989-1009	640-660	450-470	280-300	140-160	70-90		(, , - ,
Aquifer Name ¹	Sunnyside	Lynwood	Hollydale	Gage	Artesia	Bellflower			
12/15/2021	-54.72	-36.92	-34.40	-15.75	-0.19	21.14			
3/15/2022	-62.51	-31.59	-28.58	-12.51	1.85	21.72			
3/21/2022	-41.38	-30.54	-27.72	-11.84	2.03	21.70			
6/15/2022	-78.24	-32.55	-30.62	-13.53	0.80	21.29			
9/15/2022	-60.76	-35.43	-33.30	-16.26	-1.80	20.51			
Lakewood #2							Re	ference Point E	levation: 40.51
Depth of Screen Interval	1960-2000	1740-1760	1300-1320	995-1015	690-710	555-575	255-275	110-120	
Aquifer Name ¹	Sunnyside ²	Sunnyside ²	Sunnyside ²	Silverado	Lynwood	Jefferson	Gage	Artesia	
12/7/2021	-33.08	-44.42	-45.51	-58.16	-24.77	-11.90	16.78	19.06	
3/8/2022	-21.64	-34.81	-35.52	-41.69	-16.08	-5.68	18.13	20.30	
5/24/2022	-15.35	-33.43	-35.94	-49.94	-18.10	-6.77	18.13	20.27	
6/13/2022	-17.56	-35.69	-38.19	-52.07	-18.50	-7.23	17.78	20.00	
9/13/2022	-24.28	-41.82	-44.63	-59.01	-29.47	-13.91	16.25	18.54	
9/29/2022	-25.40	-42.80	-46.52	-60.33	-29.87	-14.36	16.26	18.54	
La Mirada #1	•	•	•	•			Re	ference Point E	levation: 78.30
Depth of Screen Interval	1130-1150	965-985	690-710	470-490	225-245				
Aquifer Name ¹	Sunnyside	Silverado ²	Lynwood ²	Jefferson ²	Gage				
12/7/2021	-15.02	-13.35	-27.02	-44.50	-9.22				
3/7/2022	-4.81	-3.74	-18.79	-37.89	-5.23				
5/4/2022	0.75	0.55	-19.64	-41.25	-6.96				
6/9/2022	-2.31	-1.70	-18.30	-41.77	-7.87				
8/23/2022	-8.09	-6.85	-25.55	-48.99	-12.63				
9/13/2022	-9.91	-8.40	-27.04	-46.74	-12.66				

- 1 Unless otherwise noted, aquifer designations are based on DWR's Bulletin 104.
- 2 Aquifer designation is based on WRD's in-house interpretation.
- Shaded cell indicates the zone and measurement used in Figures 2.1 and 2.2.

TABLE 2.1 GROUNDWATER ELEVATIONS, WATER YEAR 2021 - 2022 Page 5 of 11

	ZONE 1	ZONE 2	ZONE 3	ZONE 4	ZONE 5	ZONE 6	ZONE 7	ZONE 8	ZONE 9
Lawndale #1	ZONE I	LOINE 2	LONE 3	ZONE 4	LONE 3	LONE		ference Point E	
Depth of Screen Interval	1360-1400	895-905	615-635	395-415	290-310	170-190	RC		
Aquifer Name ¹	Pico Form. ²	Sunnyside ²	Silverado	Silverado	Lynwood	Gardena			
10/20/2021	-24.51	-36.84	-1.83	-1.33	-0.07	-2.13			
11/12/2021	-24.57	-36.33	-2.13	-1.68	-0.26	1.02			
12/16/2021	-24.63	-37.35	-0.24	0.45	1.39	2.07			
1/14/2022	-24.39	-37.37	-1.52	-1.08	0.44	1.79			
2/28/2022	-24.37	-43.28	-1.57	-1.06	0.45	-1.13			
3/16/2022	-24.58	-36.90	-1.72	-1.13	0.45	1.69			
4/26/2022	-24.50	-33.63	-1.38	-0.91	0.23	1.28			
4/29/2022	-24.54	-33.69	-1.46	-0.94	0.14	1.67			
5/23/2022	-24.38	-33.08	-1.43	-1.04	0.14	-1.66			
6/14/2022	-24.57	-37.22	-2.17	-1.57	-0.37	-0.13			
7/18/2022	-24.37	-40.37	-2.17	-1.58	-0.37	0.63			
8/18/2022	-24.33	-36.71	-1.52	-1.09	0.18	-1.8			
8/30/2022	-24.49	-35.81	-8.26	-1.86	-0.71	-2.18			
9/12/2022	-24.62			-2.07	-0.71	-2.18			
9/12/2022 Lomita #1	-24.39	-35.25	-2.53	-2.07	-0.39	-2.22	D ₀	ference Point E	lavation, 70.49
	1240 1260	700 720	550 570	400 420	220 240	100 120	Re	terence Point E	levation: /9.48
Depth of Screen Interval Aquifer Name 1	1240-1260 Pico Form. ²	700-720	550-570	400-420	220-240	100-120 Gage ²			
	1	Silverado	Silverado	Lynwood	Gage ²	1			
10/19/2021	-18.19	-10.88	-8.39	-10.98	-7.98	-7.89			
12/9/2021	-18.03	-10.83	-8.25	-11.12	-7.85	-7.80			
3/16/2022	-16.02	-10.57	-7.79	-11.12	-7.49	-7.50			
4/19/2022	-16.48	-11.21	-8.07	-11.36	-8.06	not measured			
6/14/2022	-19.28	-12.20	-8.76	-11.57	-8.05	-8.20			
8/30/2022	-19.28	-13.13	-9.07	-12.08	-8.87	not measured			
9/30/2022	-19.74	-12.56	-9.13	-11.75	-8.48	-8.34		2 2 2	
Long Beach #1	14204450	1000 1000	050.000	700.610	100.400		Re	ference Point E	levation: 30.86
Depth of Screen Interval	1430-1450	1230-1250	970-990	599-619	400-420	155-175			
Aquifer Name 1	Sunnyside ²	Sunnyside	Silverado ²	Lynwood ²	Jefferson ²	Artesia			
12/17/2021	-46.14	-49.95	-67.36	-34.35	-29.67	-5.20			
3/8/2022	-36.45	-39.22	-47.02	-26.70	-22.85	-2.63			
3/17/2022	-32.00	-34.23	-40.72	-24.14	-20.20	-2.95			
6/14/2022	-29.14	-32.32	-56.80	-28.91	-25.59	-4.42			
9/19/2022	-37.90	-41.23	-59.19	-37.36	-32.43	-8.05			
9/22/2022	-38.10	-41.39	-58.95	-37.74	-32.70	-8.25			
Long Beach #2	T			•		•	Re	ference Point E	levation: 44.20
Depth of Screen Interval	970-990	720-740	450-470	280-300	160-180	95-115			
Aquifer Name 1	Sunnyside	Silverado ²	Silverado	Lynwood	Gage	Gaspur			
10/19/2021	-83.16	-49.78	-43.24	-15.17	-2.85	-0.54			
12/15/2021	-81.63	-48.83	-40.37	-14.84	-2.97	-0.71			
3/17/2022	-55.82	-42.54	-40.97	-13.61	-2.38	-0.25			
4/19/2022	-36.84	-40.65	-41.53	-13.04	-2.03	-0.08			
6/14/2022	-65.36	-41.39	-43.24	-13.64	-2.27	-0.10			
9/21/2022	-74.37	-44.34	-43.03	-14.91	-2.64	-0.61			
Long Beach #3	T	1	1	1	1		Re	ference Point E	levation: 26.67
Depth of Screen Interval	1350-1390	997-1017	670-690	530-550	410-430				
Aquifer Name ¹	Pico Form. ²	Silverado	Silverado ²	Silverado ²	Lynwood				
12/15/2021	-29.48	-42.88	-42.91	-43.31	1.74				
3/16/2022	-29.77	-45.64	-45.67	-46.03	1.86				
5/23/2022	-30.70	-45.77	-45.78	-46.21	1.41				
6/8/2022	-30.70	-47.37	-47.36	-47.85	1.04				
9/6/2022	-31.80	-48.16	-47.98	-48.45	-2.68				
9/30/2022	-31.85	-47.18	-47.14	-47.60	-2.84				

- 1 Unless otherwise noted, aquifer designations are based on DWR's Bulletin 104.
- 2 Aquifer designation is based on WRD's in-house interpretation.
- Shaded cell indicates the zone and measurement used in Figures 2.1 and 2.2.

TABLE 2.1 GROUNDWATER ELEVATIONS, WATER YEAR 2021 - 2022 Page 6 of 11

	ZONE 1	ZONE 2	ZONE 3	ZONE 4	ZONE 5	ZONE 6	ZONE 7	ZONE 8	ZONE 9
Long Beach #4	ZONE I	ZONE 2	ZONE 3	ZONE 4	ZONE 5	ZONE 0			
Depth of Screen Interval	1200-1220	800-820	ı	I	I	ı	Re	reference Point E	levation: 12.34
Aquifer Name ¹	Pico Form. ²	Sunnyside ²							
12/17/2021									
	-24.78	-7.44							
3/18/2022	-25.71	-7.90							
6/17/2022	-28.10	-9.67							
9/22/2022	-27.87	-9.24							
Long Beach #6	•	T	T		1	T	Re	ference Point E	levation: 34.47
Depth of Screen Interval	1490-1510	930-950	740-760	480-500	380-400	220-240			
Aquifer Name ¹	Pico Form. ²	Sunnyside	Sunnyside	Silverado	Lynwood	Gage			
10/18/2021	-63.40	-86.16	-89.66	-97.99	-97.88	-37.68			
11/12/2021	-63.99	-87.34	-92.06	-99.28	-100.16	-36.91			
12/17/2021	-64.57	-87.77	-92.21	-99.14	-100.07	-36.38			
1/14/2022	-62.44	-73.65	-74.04	-78.54	-78.49	-34.55			
2/22/2022	-59.40	-78.68	-81.88	-85.57	-85.41	-33.53			
3/6/2022	-56.48	-70.38	-72.99	-71.95	-71.59	-32.45			
3/17/2022	-51.17	-53.20	-53.09	-54.47	-54.42	-30.68			
4/26/2022	-32.97	-34.97	-35.32	-38.13	-38.12	-27.88			
5/23/2022	-38.92	-60.67	-64.21	-73.35	-73.17	-31.17			
6/16/2022	-44.13	-68.10	-71.58	-82.16	-81.98	-32.22			
7/19/2022	-48.96	-72.83	-76.35	-85.13	-84.97	-33.31			
8/15/2022	-51.67	-75.70	-78.97	-85.85	-85.65	-33.56			
8/18/2022	-52.09	-76.01	-79.30	-86.12	-85.98	-33.90			
9/16/2022	-54.42	-78.36	-82.21	-87.67	-87.52	-34.48			
Long Beach #8	-34.42	-78.30	-02.21	-87.07	-67.32	-34.40	Re	ference Point E	levation: 21.20
Depth of Screen Interval	1435-1455	1020-1040	780-800	635-655	415-435	165-185	RC	icrence I omit L	icvation. 21.20
Aquifer Name ¹	Pico Form. ²	Sunnyside ²	Silverado ²	Silverado ²	Silverado ²	Lynwood ²			
12/17/2021	-10.25	-24.02	-35.50	-33.15	-33.04	5.11			
3/18/2022	-9.98	-23.89	-37.87	-35.72	-35.23	5.14			
5/6/2022	-10.00	-24.31	-39.58	-37.18	-36.74	5.04			
6/9/2022	-10.00	-24.82	-39.61	-37.27	-36.83	5.06			
9/23/2022	-9.61	-25.36	-39.19	-36.80	-36.39	5.10			
Los Angeles #1		7	7	•	1	T	Re	ference Point E	levation:176.21
Depth of Screen Interval	1350-1370	1080-1100	920-940	640-660	350-370				
Aquifer Name 1	Sunnyside ²	Sunnyside	Sunnyside	Silverado	Lynwood ²				
12/15/2021	-31.38	-24.42	-24.89	-24.30	-15.40				
4/5/2022	-28.13	-23.01	-23.68	-23.19	-14.56				
6/15/2022	-28.56	-23.32	-24.13	-23.89	-15.88				
9/15/2022	-28.62	-25.16	-26.10	-25.72	-16.11				
9/28/2022	-29.07	-25.31	-26.24	-25.74	-16.17				
Los Angeles #2	-						Refe	erence Point Ele	evation: 220.33
Depth of Screen Interval	1330-1370	710-730	505-525	410-430	245-265	135-155			
Aquifer Name ¹	Pico Form. 2	Sunnyside	Silverado	Lynwood	Hollydale ²	Gardena			
10/18/2021	42.77	-9.50	-9.97	-21.51	-27.16	Dry			
12/6/2021	42.67	-9.03	-9.46	-21.53	-27.49	Dry			
3/16/2022	42.72	-8.16	-8.56	-20.93	-27.18	Dry			
4/7/2022	42.64	-8.59	-9.04	-21.21	-27.44	Dry			
6/15/2022	42.61	-8.34	-8.75	-20.98	-27.24	Dry			
9/7/2022	42.01	-8.58	-8.97	-20.98	-27.70	Dry			
9/14/2022	42.29	-8.52	-8.97 -8.95	-21.43	-27.70	Dry			
	42.29	-0.32	-0.73	-21.4/	-27.94	Diy	D. C	amanaa Baint El	viotion, 145.25
Los Angeles #3	1210 1220	975 905	705 725	550 570	220.250	100 210	Kel	erence Point Ele	vation: 145.35
Depth of Screen Interval	1210-1230	875-895	705-725	550-570	330-350	190-210			
Aquifer Name 1	Pico Form. 2	Sunnyside 2	Sunnyside ²	Sunnyside	Silverado ²	Gage 2			
12/6/2021	-20.99	-10.14	-16.33	-14.07	-10.99	4.04			
3/17/2022	-20.39	-9.95	-15.98	-14.22	-11.54	3.60			
5/12/2022	-19.46	-10.43	-16.52	-14.62	-12.01	3.13			
6/27/2022	-19.55	-10.75	-17.10	-15.24	-12.20	2.94			
9/14/2022	-19.85	-11.69	-18.43	-16.18	-12.61	2.54			
9/23/2022	-19.83	-11.97	-18.72	-16.16	-12.58	2.58			
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·								

- 1 Unless otherwise noted, aquifer designations are based on DWR's Bulletin 104.
- 2 Aquifer designation is based on WRD's in-house interpretation.
- Shaded cell indicates the zone and measurement used in Figures 2.1 and 2.2.

TABLE 2.1 GROUNDWATER ELEVATIONS, WATER YEAR 2021 - 2022 Page 7 of 11

	ZONE 1	ZONE 2	ZONE 3	ZONE 4	ZONE 5	ZONE 6	ZONE 7	ZONE 8	ZONE 9
Los Angeles #4	LONE I	LUNE 2	LUITE 3	LUNE 4	LUNE 3	LONE 0		erence Point Ele	
Depth of Screen Interval	1740-1780	1190-1230	720-740	490-510	355-375	235-255	Ken	erence I omit Ere	valion. 150.0
Aquifer Name 1	Pico Form. ²	Sunnyside ²	Sunnyside	Silverado	Lynwood	Gage			
12/6/2021	-30.07	-38.22	-36.23	-28.16	-27.92	-17.70			
3/16/2022	-29.50	-34.72	-33.02	-26.16	-27.92	-17.46			
5/4/2022	-27.81	-34.72	-32.62	-26.75	-26.68	-17.84			
6/8/2022	-27.19								
9/15/2022	1	-34.15 -38.10	-33.29	-27.30 -28.97	-27.18	-18.11 -18.64			
	-28.06		-36.95		-28.41				
9/22/2022 Los Angeles #5	-28.13	-38.35	-37.00	-28.92	-28.45	-18.61	Dafe	erence Point Ele	votion: 104.1
Depth of Screen Interval	1960-2000	1235-1255	750-770	555-575	430-450	215-235	95-105	rence I out Lie	vation. 104.1
Aquifer Name ¹	Pico Form. ²	Sunnyside ²			Silverado	Lynwood ²			
12/6/2021	1		Sunnyside	Sunnyside	4.43		Exposition 62.49		
	6.31	6.42	9.47	8.10		33.01			
3/14/2022	6.12	6.39	10.74	7.71	4.06	32.73	not measured		
3/15/2022	6.21	6.36	10.90	7.75	4.06	32.76	62.95		
6/15/2022	6.02	5.72	8.49	7.42	3.74	32.59	62.85		
9/12/2022	5.78	5.02	9.67	7.16	4.09	32.40	not measured		
9/13/2022	5.99	4.99	9.75	7.21	4.15	32.38	62.70	D ' (E)	.: 012.5
Los Angeles #6	500 600	120 110	245.265	255 275	ı		Refe	rence Point Ele	vation: 213.59
Depth of Screen Interval	580-600	420-440	345-365	255-275					
Aquifer Name 1	Pico Form. ²	Sunnyside	Silverado	Lynwood					
11/19/2021	2.42	-3.63	-3.84	-4.37					
12/6/2021	2.40	-3.49	-3.81	-4.33					
3/16/2022	2.50	-3.39	-3.74	-4.26					
4/28/2022	2.54	-3.46	-3.74	-4.42					
6/16/2022	2.50	-3.48	-3.81	-4.36					
9/14/2022	2.52	-3.62	-3.84	-4.49					
Lynwood #1				Reference I	Point Elevation:	88.86 (Zones)	3, 4, 5, 6, 7 and	9) and 89.29 (Z	ones 1 2 and 9
	Ī			T	1		1		
Depth of Screen Interval	2880-2900	2430-2450	1650-1670	1445-1465	1200-1220	880-900	640-660	315-335	160-180
Aquifer Name 1	Pico Form. ²	Pico Form. ²	1650-1670 Sunnyside ²	T	1		640-660 Lynwood	315-335 Gardena	160-180 Gaspur
				1445-1465 Sunnyside ² -47.32	1200-1220	880-900	640-660 Lynwood -32.39	315-335	160-180
Aquifer Name 1	Pico Form. ²	Pico Form. ²	Sunnyside ² -52.87 -43.39	1445-1465 Sunnyside ² -47.32 -38.69	1200-1220 Silverado ²	880-900 Silverado ²	640-660 Lynwood -32.39 -27.7	315-335 Gardena	160-180 Gaspur
Aquifer Name ¹ 12/15/2021	Pico Form. ² -27.52	Pico Form. ² -46.71	Sunnyside ² -52.87 -43.39 -37.38	1445-1465 Sunnyside ² -47.32 -38.69 -33.37	1200-1220 Silverado ² -34.27	880-900 Silverado ² -31.36	640-660 Lynwood -32.39 -27.7 -28.59	315-335 Gardena -24.14	160-180 Gaspur 32.56
Aquifer Name ¹ 12/15/2021 3/18/2022	Pico Form. ² -27.52 -26.21	Pico Form. ² -46.71 -41.26	Sunnyside ² -52.87 -43.39	1445-1465 Sunnyside ² -47.32 -38.69	1200-1220 Silverado ² -34.27 -28.54	880-900 Silverado ² -31.36 -26.85	640-660 Lynwood -32.39 -27.7	315-335 Gardena -24.14 -21.67	160-180 Gaspur 32.56 32.84
Aquifer Name ¹ 12/15/2021 3/18/2022 5/10/2022	Pico Form. ² -27.52 -26.21 -23.34	Pico Form. ² -46.71 -41.26 -32.07	Sunnyside ² -52.87 -43.39 -37.38	1445-1465 Sunnyside ² -47.32 -38.69 -33.37	1200-1220 Silverado ² -34.27 -28.54 -26.76	880-900 Silverado ² -31.36 -26.85 -27.35	640-660 Lynwood -32.39 -27.7 -28.59	315-335 Gardena -24.14 -21.67 -21.79	160-180 Gaspur 32.56 32.84 32.64
Aquifer Name ¹ 12/15/2021 3/18/2022 5/10/2022 6/14/2022	Pico Form. ² -27.52 -26.21 -23.34 -22.56	Pico Form. ² -46.71 -41.26 -32.07 -34.73	Sunnyside ² -52.87 -43.39 -37.38 -43.09	1445-1465 Sunnyside ² -47.32 -38.69 -33.37 -38.26	1200-1220 Silverado ² -34.27 -28.54 -26.76 -28.97	880-900 Silverado ² -31.36 -26.85 -27.35 -28.59	640-660 Lynwood -32.39 -27.7 -28.59 -29.67	315-335 Gardena -24.14 -21.67 -21.79 -24.06	160-180 Gaspur 32.56 32.84 32.64 32.64
Aquifer Name ¹ 12/15/2021 3/18/2022 5/10/2022 6/14/2022 9/14/2022	Pico Form. ² -27.52 -26.21 -23.34 -22.56 -23.94 -24.06	Pico Form. ² -46.71 -41.26 -32.07 -34.73 -40.96 -41.39	Sunnyside ² -52.87 -43.39 -37.38 -43.09 -49.60 -49.87	1445-1465 Sunnyside ² -47.32 -38.69 -33.37 -38.26 -44.56 -44.76	1200-1220 Silverado ² -34.27 -28.54 -26.76 -28.97 -32.73 -32.99	880-900 Silverado ² -31.36 -26.85 -27.35 -28.59 -31.07 -31.05	640-660 Lynwood -32.39 -27.7 -28.59 -29.67 -32.28 -32.25	315-335 Gardena -24.14 -21.67 -21.79 -24.06 -27.10	160-180 Gaspur 32.56 32.84 32.64 32.64 32.25 32.30
Aquifer Name ¹ 12/15/2021 3/18/2022 5/10/2022 6/14/2022 9/14/2022 9/27/2022 Manhattan Beach #1 Depth of Screen Interval	Pico Form. ² -27.52 -26.21 -23.34 -22.56 -23.94 -24.06	Pico Form. ² -46.71 -41.26 -32.07 -34.73 -40.96 -41.39	Sunnyside ² -52.87 -43.39 -37.38 -43.09 -49.60 -49.87	1445-1465 Sunnyside ² -47.32 -38.69 -33.37 -38.26 -44.56 -44.76	1200-1220 Silverado ² -34.27 -28.54 -26.76 -28.97 -32.73 -32.99	880-900 Silverado ² -31.36 -26.85 -27.35 -28.59 -31.07	640-660 Lynwood -32.39 -27.7 -28.59 -29.67 -32.28 -32.25	315-335 Gardena -24.14 -21.67 -21.79 -24.06 -27.10 -26.73	160-180 Gaspur 32.56 32.84 32.64 32.64 32.25 32.30
Aquifer Name 1 12/15/2021 3/18/2022 5/10/2022 6/14/2022 9/14/2022 9/27/2022 Manhattan Beach #1	Pico Form. ² -27.52 -26.21 -23.34 -22.56 -23.94 -24.06	Pico Form. ² -46.71 -41.26 -32.07 -34.73 -40.96 -41.39	Sunnyside ² -52.87 -43.39 -37.38 -43.09 -49.60 -49.87	1445-1465 Sunnyside ² -47.32 -38.69 -33.37 -38.26 -44.56 -44.76	1200-1220 Silverado ² -34.27 -28.54 -26.76 -28.97 -32.73 -32.99	880-900 Silverado ² -31.36 -26.85 -27.35 -28.59 -31.07 -31.05	640-660 Lynwood -32.39 -27.7 -28.59 -29.67 -32.28 -32.25	315-335 Gardena -24.14 -21.67 -21.79 -24.06 -27.10 -26.73	160-180 Gaspur 32.56 32.84 32.64 32.64 32.25 32.30
Aquifer Name ¹ 12/15/2021 3/18/2022 5/10/2022 6/14/2022 9/14/2022 9/27/2022 Manhattan Beach #1 Depth of Screen Interval	Pico Form. ² -27.52 -26.21 -23.34 -22.56 -23.94 -24.06	Pico Form. ² -46.71 -41.26 -32.07 -34.73 -40.96 -41.39	Sunnyside ² -52.87 -43.39 -37.38 -43.09 -49.60 -49.87	1445-1465 Sunnyside ² -47.32 -38.69 -33.37 -38.26 -44.56 -44.76	1200-1220 Silverado ² -34.27 -28.54 -26.76 -28.97 -32.73 -32.99	880-900 Silverado ² -31.36 -26.85 -27.35 -28.59 -31.07 -31.05	640-660 Lynwood -32.39 -27.7 -28.59 -29.67 -32.28 -32.25 Refe	315-335 Gardena -24.14 -21.67 -21.79 -24.06 -27.10 -26.73	160-180 Gaspur 32.56 32.84 32.64 32.64 32.25 32.30
Aquifer Name ¹ 12/15/2021 3/18/2022 5/10/2022 6/14/2022 9/14/2022 9/27/2022 Manhattan Beach #1 Depth of Screen Interval Aquifer Name ¹	Pico Form. ² -27.52 -26.21 -23.34 -22.56 -23.94 -24.06 1950-1990 Pico Form. ²	Pico Form. ² -46.71 -41.26 -32.07 -34.73 -40.96 -41.39 1570-1590 Pico Form. ²	Sunnyside ² -52.87 -43.39 -37.38 -43.09 -49.60 -49.87 1250-1270 Pico Form. ²	1445-1465 Sunnyside ² -47.32 -38.69 -33.37 -38.26 -44.56 -44.76 865-885 Sunnyside ²	1200-1220 Silverado ² -34.27 -28.54 -26.76 -28.97 -32.73 -32.99 640-660 Sunnyside ²	880-900 Silverado ² -31.36 -26.85 -27.35 -28.59 -31.07 -31.05	640-660 Lynwood -32.39 -27.7 -28.59 -29.67 -32.28 -32.25 Reference	315-335 Gardena -24.14 -21.67 -21.79 -24.06 -27.10 -26.73	160-180 Gaspur 32.56 32.84 32.64 32.64 32.25 32.30
Aquifer Name ¹ 12/15/2021 3/18/2022 5/10/2022 6/14/2022 9/14/2022 9/27/2022 Manhattan Beach #1 Depth of Screen Interval Aquifer Name ¹ 10/20/2021	Pico Form. 2 -27.52 -26.21 -23.34 -22.56 -23.94 -24.06 1950-1990 Pico Form. 2 0.87	Pico Form. ² -46.71 -41.26 -32.07 -34.73 -40.96 -41.39 1570-1590 Pico Form. ² -1.61	Sunnyside ² -52.87 -43.39 -37.38 -43.09 -49.60 -49.87 1250-1270 Pico Form. ² -23.81	1445-1465 Sunnyside ² -47.32 -38.69 -33.37 -38.26 -44.56 -44.76 865-885 Sunnyside ² 3.63	1200-1220 Silverado ² -34.27 -28.54 -26.76 -28.97 -32.73 -32.99 640-660 Sunnyside ² -0.11	880-900 Silverado ² -31.36 -26.85 -27.35 -28.59 -31.07 -31.05 320-340 Silverado 8.38	640-660 Lynwood -32.39 -27.7 -28.59 -29.67 -32.28 -32.25 Reference of the control of the	315-335 Gardena -24.14 -21.67 -21.79 -24.06 -27.10 -26.73	160-180 Gaspur 32.56 32.84 32.64 32.64 32.25 32.30
Aquifer Name 1 12/15/2021 3/18/2022 5/10/2022 6/14/2022 9/14/2022 9/27/2022 Manhattan Beach #1 Depth of Screen Interval Aquifer Name 1 10/20/2021 12/13/2021	Pico Form. ² -27.52 -26.21 -23.34 -22.56 -23.94 -24.06 1950-1990 Pico Form. ² 0.87 0.90	Pico Form. ² -46.71 -41.26 -32.07 -34.73 -40.96 -41.39 1570-1590 Pico Form. ² -1.61 -1.61	Sunnyside ² -52.87 -43.39 -37.38 -43.09 -49.60 -49.87 1250-1270 Pico Form. ² -23.81 -23.80	1445-1465 Sunnyside ² -47.32 -38.69 -33.37 -38.26 -44.56 -44.76 865-885 Sunnyside ² 3.63 3.77	1200-1220 Silverado ² -34.27 -28.54 -26.76 -28.97 -32.73 -32.99 640-660 Sunnyside ² -0.11 0.22	880-900 Silverado ² -31.36 -26.85 -27.35 -28.59 -31.07 -31.05 320-340 Silverado 8.38 8.70	640-660 Lynwood -32.39 -27.7 -28.59 -29.67 -32.28 -32.25 Refe 180-200 Gage 10.21 10.35	315-335 Gardena -24.14 -21.67 -21.79 -24.06 -27.10 -26.73	160-180 Gaspur 32.56 32.84 32.64 32.64 32.25 32.30
Aquifer Name ¹ 12/15/2021 3/18/2022 5/10/2022 6/14/2022 9/14/2022 9/27/2022 Manhattan Beach #1 Depth of Screen Interval Aquifer Name ¹ 10/20/2021 12/13/2021 3/16/2022	Pico Form. ² -27.52 -26.21 -23.34 -22.56 -23.94 -24.06 1950-1990 Pico Form. ² 0.87 0.90 1.26	Pico Form. ² -46.71 -41.26 -32.07 -34.73 -40.96 -41.39 1570-1590 Pico Form. ² -1.61 -1.37	Sunnyside ² -52.87 -43.39 -37.38 -43.09 -49.60 -49.87 1250-1270 Pico Form. ² -23.81 -23.80 -23.53	1445-1465 Sunnyside ² -47.32 -38.69 -33.37 -38.26 -44.56 -44.76 865-885 Sunnyside ² 3.63 3.77 4.22	1200-1220 Silverado ² -34.27 -28.54 -26.76 -28.97 -32.73 -32.99 640-660 Sunnyside ² -0.11 0.22 0.73	880-900 Silverado ² -31.36 -26.85 -27.35 -28.59 -31.07 -31.05 320-340 Silverado 8.38 8.70 9.12	640-660 Lynwood -32.39 -27.7 -28.59 -29.67 -32.28 -32.25 Refe 180-200 Gage 10.21 10.35 10.85	315-335 Gardena -24.14 -21.67 -21.79 -24.06 -27.10 -26.73	160-180 Gaspur 32.56 32.84 32.64 32.64 32.25 32.30
Aquifer Name 1 12/15/2021 3/18/2022 5/10/2022 6/14/2022 9/14/2022 9/27/2022 Manhattan Beach #1 Depth of Screen Interval Aquifer Name 1 10/20/2021 12/13/2021 3/16/2022 3/22/2022	Pico Form. ² -27.52 -26.21 -23.34 -22.56 -23.94 -24.06 1950-1990 Pico Form. ² 0.87 0.90 1.26 0.82	Pico Form. ² -46.71 -41.26 -32.07 -34.73 -40.96 -41.39 1570-1590 Pico Form. ² -1.61 -1.37 -1.63	Sunnyside ² -52.87 -43.39 -37.38 -43.09 -49.60 -49.87 1250-1270 Pico Form. ² -23.81 -23.80 -23.53 -23.62	1445-1465 Sunnyside ² -47.32 -38.69 -33.37 -38.26 -44.56 -44.76 865-885 Sunnyside ² 3.63 3.77 4.22 4.08	1200-1220 Silverado ² -34.27 -28.54 -26.76 -28.97 -32.73 -32.99 640-660 Sunnyside ² -0.11 0.22 0.73 0.76	880-900 Silverado ² -31.36 -26.85 -27.35 -28.59 -31.07 -31.05 320-340 Silverado 8.38 8.70 9.12 9.16	640-660 Lynwood -32.39 -27.7 -28.59 -29.67 -32.28 -32.25 Refe 180-200 Gage 10.21 10.35 10.85 10.80	315-335 Gardena -24.14 -21.67 -21.79 -24.06 -27.10 -26.73	160-180 Gaspur 32.56 32.84 32.64 32.64 32.25 32.30
Aquifer Name 1 12/15/2021 3/18/2022 5/10/2022 6/14/2022 9/14/2022 9/27/2022 Manhattan Beach #1 Depth of Screen Interval Aquifer Name 1 10/20/2021 12/13/2021 3/16/2022 3/22/2022 6/7/2022	Pico Form. ² -27.52 -26.21 -23.34 -22.56 -23.94 -24.06 1950-1990 Pico Form. ² 0.87 0.90 1.26 0.82 1.09	Pico Form. ² -46.71 -41.26 -32.07 -34.73 -40.96 -41.39 1570-1590 Pico Form. ² -1.61 -1.37 -1.63 -1.41	Sunnyside ² -52.87 -43.39 -37.38 -43.09 -49.60 -49.87 1250-1270 Pico Form. ² -23.81 -23.80 -23.53 -23.62 -23.62	1445-1465 Sunnyside ² -47.32 -38.69 -33.37 -38.26 -44.56 -44.76 865-885 Sunnyside ² 3.63 3.77 4.22 4.08 3.62	1200-1220 Silverado ² -34.27 -28.54 -26.76 -28.97 -32.73 -32.99 640-660 Sunnyside ² -0.11 0.22 0.73 0.76 -0.32	880-900 Silverado ² -31.36 -26.85 -27.35 -28.59 -31.07 -31.05 320-340 Silverado 8.38 8.70 9.12 9.16 8.08	640-660 Lynwood -32.39 -27.7 -28.59 -29.67 -32.28 -32.25 Refe 180-200 Gage 10.21 10.35 10.85 10.80 9.87	315-335 Gardena -24.14 -21.67 -21.79 -24.06 -27.10 -26.73	160-180 Gaspur 32.56 32.84 32.64 32.64 32.25 32.30
Aquifer Name 1 12/15/2021 3/18/2022 5/10/2022 6/14/2022 9/14/2022 9/27/2022 Manhattan Beach #1 Depth of Screen Interval Aquifer Name 1 10/20/2021 12/13/2021 3/16/2022 3/22/2022 6/7/2022 7/26/2022	Pico Form. ² -27.52 -26.21 -23.34 -22.56 -23.94 -24.06 1950-1990 Pico Form. ² 0.87 0.90 1.26 0.82 1.09 1.07	Pico Form. ² -46.71 -41.26 -32.07 -34.73 -40.96 -41.39 1570-1590 Pico Form. ² -1.61 -1.63 -1.41 -1.46	Sunnyside ² -52.87 -43.39 -37.38 -43.09 -49.60 -49.87 1250-1270 Pico Form. ² -23.81 -23.80 -23.62 -23.62 -23.64	1445-1465 Sunnyside ² -47.32 -38.69 -33.37 -38.26 -44.56 -44.76 865-885 Sunnyside ² 3.63 3.77 4.22 4.08 3.62 3.71	1200-1220 Silverado ² -34.27 -28.54 -26.76 -28.97 -32.73 -32.99 640-660 Sunnyside ² -0.11 0.22 0.73 0.76 -0.32 -0.28	880-900 Silverado ² -31.36 -26.85 -27.35 -28.59 -31.07 -31.05 320-340 Silverado 8.38 8.70 9.12 9.16 8.08 8.19	640-660 Lynwood -32.39 -27.7 -28.59 -29.67 -32.28 -32.25 Refe 180-200 Gage 10.21 10.35 10.85 10.80 9.87 9.96	315-335 Gardena -24.14 -21.67 -21.79 -24.06 -27.10 -26.73	160-180 Gaspur 32.56 32.84 32.64 32.64 32.25 32.30 evation: 128.7
Aquifer Name 1 12/15/2021 3/18/2022 5/10/2022 6/14/2022 9/14/2022 9/27/2022 Manhattan Beach #1 Depth of Screen Interval Aquifer Name 1 10/20/2021 12/13/2021 3/16/2022 3/22/2022 6/7/2022 7/26/2022 9/21/2022 Montebello #1 Depth of Screen Interval	Pico Form. ² -27.52 -26.21 -23.34 -22.56 -23.94 -24.06 1950-1990 Pico Form. ² 0.87 0.90 1.26 0.82 1.09 1.07 1.34	Pico Form. ² -46.71 -41.26 -32.07 -34.73 -40.96 -41.39 1570-1590 Pico Form. ² -1.61 -1.63 -1.41 -1.46	Sunnyside ² -52.87 -43.39 -37.38 -43.09 -49.60 -49.87 1250-1270 Pico Form. ² -23.81 -23.80 -23.62 -23.62 -23.64	1445-1465 Sunnyside ² -47.32 -38.69 -33.37 -38.26 -44.56 -44.76 865-885 Sunnyside ² 3.63 3.77 4.22 4.08 3.62 3.71	1200-1220 Silverado ² -34.27 -28.54 -26.76 -28.97 -32.73 -32.99 640-660 Sunnyside ² -0.11 0.22 0.73 0.76 -0.32 -0.28	880-900 Silverado ² -31.36 -26.85 -27.35 -28.59 -31.07 -31.05 320-340 Silverado 8.38 8.70 9.12 9.16 8.08 8.19	640-660 Lynwood -32.39 -27.7 -28.59 -29.67 -32.28 -32.25 Refe 180-200 Gage 10.21 10.35 10.85 10.80 9.87 9.96	315-335 Gardena -24.14 -21.67 -21.79 -24.06 -27.10 -26.73 erence Point Ele	160-180 Gaspur 32.56 32.84 32.64 32.64 32.25 32.30 evation: 128.7
Aquifer Name 1 12/15/2021 3/18/2022 5/10/2022 6/14/2022 9/14/2022 9/27/2022 Manhattan Beach #1 Depth of Screen Interval Aquifer Name 1 10/20/2021 12/13/2021 3/16/2022 3/22/2022 6/7/2022 7/26/2022 9/21/2022 Montebello #1	Pico Form. 2 -27.52 -26.21 -23.34 -22.56 -23.94 -24.06 1950-1990 Pico Form. 2 0.87 0.90 1.26 0.82 1.09 1.07 1.34	Pico Form. ² -46.71 -41.26 -32.07 -34.73 -40.96 -41.39 1570-1590 Pico Form. ² -1.61 -1.63 -1.41 -1.46 -1.21	Sunnyside ² -52.87 -43.39 -37.38 -43.09 -49.60 -49.87 1250-1270 Pico Form. ² -23.81 -23.80 -23.53 -23.62 -23.62 -23.64 -23.53	1445-1465 Sunnyside ² -47.32 -38.69 -33.37 -38.26 -44.56 -44.76 865-885 Sunnyside ² 3.63 3.77 4.22 4.08 3.62 3.71 3.76	1200-1220 Silverado ² -34.27 -28.54 -26.76 -28.97 -32.73 -32.99 640-660 Sunnyside ² -0.11 0.22 0.73 0.76 -0.32 -0.28 -1.37	880-900 Silverado ² -31.36 -26.85 -27.35 -28.59 -31.07 -31.05 320-340 Silverado 8.38 8.70 9.12 9.16 8.08 8.19 7.44	640-660 Lynwood -32.39 -27.7 -28.59 -29.67 -32.28 -32.25 Refe 180-200 Gage 10.21 10.35 10.85 10.80 9.87 9.96	315-335 Gardena -24.14 -21.67 -21.79 -24.06 -27.10 -26.73 erence Point Ele	160-180 Gaspur 32.56 32.84 32.64 32.64 32.25 32.30 evation: 128.7
Aquifer Name 1 12/15/2021 3/18/2022 5/10/2022 6/14/2022 9/14/2022 9/27/2022 Manhattan Beach #1 Depth of Screen Interval Aquifer Name 1 10/20/2021 12/13/2021 3/16/2022 3/22/2022 6/7/2022 7/26/2022 9/21/2022 Montebello #1 Depth of Screen Interval	Pico Form. ² -27.52 -26.21 -23.34 -22.56 -23.94 -24.06 1950-1990 Pico Form. ² 0.87 0.90 1.26 0.82 1.09 1.07 1.34	Pico Form. 2 -46.71 -41.26 -32.07 -34.73 -40.96 -41.39 1570-1590 Pico Form. 2 -1.61 -1.37 -1.63 -1.41 -1.46 -1.21	Sunnyside ² -52.87 -43.39 -37.38 -43.09 -49.60 -49.87 1250-1270 Pico Form. ² -23.81 -23.80 -23.53 -23.62 -23.62 -23.64 -23.53	1445-1465 Sunnyside ² -47.32 -38.69 -33.37 -38.26 -44.56 -44.76 865-885 Sunnyside ² 3.63 3.77 4.22 4.08 3.62 3.71 3.76	1200-1220 Silverado ² -34.27 -28.54 -26.76 -28.97 -32.73 -32.99 640-660 Sunnyside ² -0.11 0.22 0.73 0.76 -0.32 -0.28 -1.37	880-900 Silverado ² -31.36 -26.85 -27.35 -28.59 -31.07 -31.05 320-340 Silverado 8.38 8.70 9.12 9.16 8.08 8.19 7.44	640-660 Lynwood -32.39 -27.7 -28.59 -29.67 -32.28 -32.25 Refe 180-200 Gage 10.21 10.35 10.85 10.80 9.87 9.96	315-335 Gardena -24.14 -21.67 -21.79 -24.06 -27.10 -26.73 erence Point Ele	160-180 Gaspur 32.56 32.84 32.64 32.64 32.25 32.30 evation: 128.7
Aquifer Name 1 12/15/2021 3/18/2022 5/10/2022 6/14/2022 9/14/2022 9/27/2022 Manhattan Beach #1 Depth of Screen Interval Aquifer Name 1 10/20/2021 12/13/2021 3/16/2022 3/22/2022 6/7/2022 7/26/2022 9/21/2022 Montebello #1 Depth of Screen Interval Aquifer Name 1	Pico Form. 2 -27.52 -26.21 -23.34 -22.56 -23.94 -24.06 1950-1990 Pico Form. 2 0.87 0.90 1.26 0.82 1.09 1.07 1.34 900-960 Pico Form. 2	Pico Form. ² -46.71 -41.26 -32.07 -34.73 -40.96 -41.39 1570-1590 Pico Form. ² -1.61 -1.37 -1.63 -1.41 -1.46 -1.21 690-710 Sunnyside	Sunnyside ² -52.87 -43.39 -37.38 -43.09 -49.60 -49.87 1250-1270 Pico Form. ² -23.81 -23.80 -23.53 -23.62 -23.62 -23.64 -23.53 500-520 Sunnyside	1445-1465 Sunnyside ² -47.32 -38.69 -33.37 -38.26 -44.56 -44.76 865-885 Sunnyside ² 3.63 3.77 4.22 4.08 3.62 3.71 3.76 370-390 Silverado	1200-1220 Silverado ² -34.27 -28.54 -26.76 -28.97 -32.73 -32.99 640-660 Sunnyside ² -0.11 0.22 0.73 0.76 -0.32 -0.28 -1.37	880-900 Silverado ² -31.36 -26.85 -27.35 -28.59 -31.07 -31.05 320-340 Silverado 8.38 8.70 9.12 9.16 8.08 8.19 7.44 90-110 Gage	640-660 Lynwood -32.39 -27.7 -28.59 -29.67 -32.28 -32.25 Refe 180-200 Gage 10.21 10.35 10.85 10.80 9.87 9.96	315-335 Gardena -24.14 -21.67 -21.79 -24.06 -27.10 -26.73 erence Point Ele	160-180 Gaspur 32.56 32.84 32.64 32.64 32.25 32.30 evation: 128.7
Aquifer Name 1 12/15/2021 3/18/2022 5/10/2022 6/14/2022 9/14/2022 9/27/2022 Manhattan Beach #1 Depth of Screen Interval Aquifer Name 1 10/20/2021 12/13/2021 3/16/2022 3/22/2022 6/7/2022 7/26/2022 9/21/2022 Montebello #1 Depth of Screen Interval Aquifer Name 1 10/20/2021	Pico Form. 2 -27.52 -26.21 -23.34 -22.56 -23.94 -24.06 1950-1990 Pico Form. 2 0.87 0.90 1.26 0.82 1.09 1.07 1.34 900-960 Pico Form. 2 58.11	Pico Form. ² -46.71 -41.26 -32.07 -34.73 -40.96 -41.39 1570-1590 Pico Form. ² -1.61 -1.61 -1.37 -1.63 -1.41 -1.46 -1.21 690-710 Sunnyside 53.10	Sunnyside ² -52.87 -43.39 -37.38 -43.09 -49.60 -49.87 1250-1270 Pico Form. ² -23.81 -23.80 -23.53 -23.62 -23.64 -23.53 500-520 Sunnyside 52.54 50.48	1445-1465 Sunnyside ² -47.32 -38.69 -33.37 -38.26 -44.56 -44.76 865-885 Sunnyside ² 3.63 3.77 4.22 4.08 3.62 3.71 3.76 370-390 Silverado 49.69	1200-1220 Silverado ² -34.27 -28.54 -26.76 -28.97 -32.73 -32.99 640-660 Sunnyside ² -0.11 0.22 0.73 0.76 -0.32 -0.28 -1.37 210-230 Lynwood 46.01	880-900 Silverado ² -31.36 -26.85 -27.35 -28.59 -31.07 -31.05 320-340 Silverado 8.38 8.70 9.12 9.16 8.08 8.19 7.44 90-110 Gage Dry	640-660 Lynwood -32.39 -27.7 -28.59 -29.67 -32.28 -32.25 Refe 180-200 Gage 10.21 10.35 10.85 10.80 9.87 9.96	315-335 Gardena -24.14 -21.67 -21.79 -24.06 -27.10 -26.73 erence Point Ele	160-180 Gaspur 32.56 32.84 32.64 32.64 32.25 32.30 evation: 128.7
Aquifer Name 1 12/15/2021 3/18/2022 5/10/2022 6/14/2022 9/14/2022 9/27/2022 Manhattan Beach #1 Depth of Screen Interval Aquifer Name 1 10/20/2021 12/13/2021 3/16/2022 3/22/2022 6/7/2022 7/26/2022 9/21/2022 Montebello #1 Depth of Screen Interval Aquifer Name 1 10/20/2021 12/10/2021 3/8/2022	Pico Form. 2 -27.52 -26.21 -23.34 -22.56 -23.94 -24.06 Pico Form. 2 0.87 0.90 1.26 0.82 1.09 1.07 1.34 900-960 Pico Form. 2 58.11 55.96 60.06	Pico Form. ² -46.71 -41.26 -32.07 -34.73 -40.96 -41.39 1570-1590 Pico Form. ² -1.61 -1.63 -1.41 -1.46 -1.21 690-710 Sunnyside 53.10 51.00 56.36	Sunnyside ² -52.87 -43.39 -37.38 -43.09 -49.60 -49.87 1250-1270 Pico Form. ² -23.81 -23.80 -23.53 -23.62 -23.64 -23.53 500-520 Sunnyside 52.54 50.48 52.68	1445-1465 Sunnyside ² -47.32 -38.69 -33.37 -38.26 -44.56 -44.76 865-885 Sunnyside ² 3.63 3.77 4.22 4.08 3.62 3.71 3.76 370-390 Silverado 49.69 47.79 52.64	1200-1220 Silverado ² -34.27 -28.54 -26.76 -28.97 -32.73 -32.99 640-660 Sunnyside ² -0.11 0.22 0.73 0.76 -0.32 -0.28 -1.37 210-230 Lynwood 46.01 43.60 47.51	880-900 Silverado ² -31.36 -26.85 -27.35 -28.59 -31.07 -31.05 320-340 Silverado 8.38 8.70 9.12 9.16 8.08 8.19 7.44 90-110 Gage Dry Dry	640-660 Lynwood -32.39 -27.7 -28.59 -29.67 -32.28 -32.25 Refe 180-200 Gage 10.21 10.35 10.85 10.80 9.87 9.96	315-335 Gardena -24.14 -21.67 -21.79 -24.06 -27.10 -26.73 erence Point Ele	160-180 Gaspur 32.56 32.84 32.64 32.64 32.25 32.30 evation: 128.7
Aquifer Name 1 12/15/2021 3/18/2022 5/10/2022 6/14/2022 9/14/2022 9/27/2022 Manhattan Beach #1 Depth of Screen Interval Aquifer Name 1 10/20/2021 12/13/2021 3/16/2022 3/22/2022 6/7/2022 7/26/2022 9/21/2022 Montebello #1 Depth of Screen Interval Aquifer Name 1 10/20/2021 12/13/2021 12/13/2021 12/13/2021 12/13/2021	Pico Form. 2 -27.52 -26.21 -23.34 -22.56 -23.94 -24.06 1950-1990 Pico Form. 2 0.87 0.90 1.26 0.82 1.09 1.07 1.34 900-960 Pico Form. 2 58.11 55.96	Pico Form. ² -46.71 -41.26 -32.07 -34.73 -40.96 -41.39 1570-1590 Pico Form. ² -1.61 -1.61 -1.37 -1.63 -1.41 -1.46 -1.21 690-710 Sunnyside 53.10 51.00	Sunnyside ² -52.87 -43.39 -37.38 -43.09 -49.60 -49.87 1250-1270 Pico Form. ² -23.81 -23.80 -23.53 -23.62 -23.64 -23.53 500-520 Sunnyside 52.54 50.48	1445-1465 Sunnyside ² -47.32 -38.69 -33.37 -38.26 -44.56 -44.76 865-885 Sunnyside ² 3.63 3.77 4.22 4.08 3.62 3.71 3.76 370-390 Silverado 49.69 47.79	1200-1220 Silverado ² -34.27 -28.54 -26.76 -28.97 -32.73 -32.99 640-660 Sunnyside ² -0.11 0.22 0.73 0.76 -0.32 -0.28 -1.37 210-230 Lynwood 46.01 43.60	880-900 Silverado ² -31.36 -26.85 -27.35 -28.59 -31.07 -31.05 320-340 Silverado 8.38 8.70 9.12 9.16 8.08 8.19 7.44 90-110 Gage Dry Dry	640-660 Lynwood -32.39 -27.7 -28.59 -29.67 -32.28 -32.25 Refe 180-200 Gage 10.21 10.35 10.85 10.80 9.87 9.96	315-335 Gardena -24.14 -21.67 -21.79 -24.06 -27.10 -26.73 erence Point Ele	160-180 Gaspur 32.56 32.84 32.64 32.64 32.25 32.30 evation: 128.7

- 1 Unless otherwise noted, aquifer designations are based on DWR's Bulletin 104.
- 2 Aquifer designation is based on WRD's in-house interpretation.
- Shaded cell indicates the zone and measurement used in Figures 2.1 and 2.2.

TABLE 2.1 GROUNDWATER ELEVATIONS, WATER YEAR 2021 - 2022 Page 8 of 11

	ZONE 1	ZONE 2	ZONE 3	ZONE 4	ZONE 5	ZONE 6	ZONE 7	ZONE 8	ZONE 9
Montebello #2	LONE I	LUNE 2	LUNE 3	LUNE 4	LUNE 3	LUNE 0		ference Point El	
Depth of Screen Interval	745-780	415-435	250-260	180-200	100-115		No.	lerence I omit El	C. anon. 102.7
Aquifer Name ¹	Pico Form. ²	Pico Form. ²	Sunnyside	Sunnyside	Gage				
12/13/2021	115.93	101.54	90.00	89.38	102.73				
3/7/2022	116.75	106.37	99.95	99.20	110.37				
4/27/2022	114.66	104.67	97.32	96.81	108.50				
6/6/2022	114.38	103.43	94.94	94.35	106.55				
9/13/2022	112.70	97.18	87.19	86.68	99.79				
9/19/2022	107.79	96.98	86.68	86.00	99.36				
Norwalk #1	107.77	70.70	00.00	00.00	77.50	<u>[</u>	Re	ference Point E	levation: 96.1
Depth of Screen Interval	1400-1420	990-1010	720-740	430-450	220-240				
Aquifer Name 1	Sunnyside	Silverado	Lynwood	Hollydale	Gage				
12/6/2021	24.33	-25.03	-0.52	-11.33	-8.37				
3/7/2022	27.62	-12.41	5.31	-8.15	-6.62				
4/25/2022	29.40	-5.49	7.91	-6.55	-5.76				
6/15/2022	30.55	-10.89	7.36	-8.36	-6.05				
9/12/2022	27.83	-12.71	3.57	-9.62	-7.44				
Norwalk #2	27.03	-12.71	3.57	-9.02			Ref	erence Point Ele	evation: 116.7
Depth of Screen Interval	1460-1480	1260-1280	960-980	800-820	480-500	236-256	1101		valient 11017
Aguifer Name ¹	Pico Form. ²	Pico Form. ²	Sunnyside ²	Sunnyside ²	Silverado	Gardena			
12/13/2021	1.11	1.18	-7.44	-3.92	5.47	11.77			
3/9/2022	5.70	5.78	1.13	4.47	10.83	15.27			
5/5/2022	9.32	9.40	5.76	7.65	11.11	15.47			
6/13/2022	9.45	9.53	2.23	4.28	8.71	14.38			
9/8/2022	5.32	5.36	-4.16	-0.56	6.56	12.54			
9/22/2022	5.15	4.96	-4.76	-0.80	5.58	12.33			
Paramount #1	3.13	4.50	-4.70	-0.00	3.36	12.33	Re	eference Point E	levation: 70.7
Depth of Screen Interval	2080-2100	1700-1720	1190-1210	925-945	620-640	420-440	215-235	licience i omi L	icvation. 70.7
Aquifer Name 1	Pico Form. ²	Pico Form. ²	Pico Form. ²	Sunnyside	Lynwood	Hollydale	Exposition		
11/24/2021	-21.85	-27.75	-24.15	-13.49	-9.20	19.12	25.87		
12/8/2021	-21.83	-27.56	-23.75	-12.75	-8.26	19.12	25.90		
3/9/2022	-13.82	-21.51	-17.84	-8.73	-5.30	15.91	26.09		
6/8/2022	-10.80	-20.78	-17.84	-10.20	-6.70	19.95	26.08		
8/17/2022	-17.21	-20.78	-23.37	-13.28	-9.43	19.93	25.78		
9/16/2022	-17.21	-24.98	-23.08	-13.28	-9.43	18.96	25.78		
Pico #1	-17.47	-24.96	-23.08	-14.39	-10.72	18.90		erence Point Ele	votion: 1929
Depth of Screen Interval	860-900	460-480	380-400	170-190	l	I	Ren		valion. 162.6
Aquifer Name 1	Pico Form. ²	Silverado	Silverado	Gardena ²					
12/15/2021	1								
	98.38	85.05	84.55	81.32					
3/3/2022	107.51 107.20	96.41 94.89	95.87 94.34	91.85					
3/17/2022 6/6/2022		94.89	89.23	90.88					
	104.06			85.21					
8/24/2022	97.62	83.46	82.87	78.92					
9/15/2022 Pico #2	95.60	81.39	81.15	77.23			D - 6	erence Point Ele	votion, 151 0
Depth of Screen Interval	1180-1200	830-850	560-580	320-340	235-255	100-120	Kel	crence rount Ele	vanon. 131.8
Aquifer Name 1	Sunnyside ²	Sunnyside ²	Sunnyside	Silverado	Lynwood	Gaspur/Gage ²			
10/20/2021		40.92	49.03		67.24	ı c			
	42.22			68.01		75.73			
12/15/2021	41.93	43.30	49.72	72.35	73.47	79.84			
3/15/2022	47.99	47.99	57.22	79.51	80.68	86.94			
5/5/2022	46.03	44.93	55.38	79.38	80.48	86.04			
6/15/2022	44.93	44.96	54.04	77.61	78.92	84.90			
8/29/2022	39.03	36.98	46.98	69.98	71.13	77.22			
9/15/2022	38.90	39.64	47.33	68.60	69.58	74.77			

- 1 Unless otherwise noted, aquifer designations are based on DWR's Bulletin 104.
- 2 Aquifer designation is based on WRD's in-house interpretation.
- Shaded cell indicates the zone and measurement used in Figures 2.1 and 2.2.

TABLE 2.1 GROUNDWATER ELEVATIONS, WATER YEAR 2021 - 2022 Page 9 of 11

	ZONE 1	ZONE 2	ZONE 3	ZONE 4	ZONE 5	ZONE 6	ZONE 7	ZONE 8	ZONE 9
PM-1 Columbia	LOIL I	LONE 2	LOINE 3	LUNE 4	LONE 3	LONE		ference Point E	
Depth of Screen Interval	555-595	460-500	240-280	160-200			Re	reference 1 out 12	evation: 01.5
Aquifer Name ¹	Silverado	Silverado	Lynwood	Gardena					
12/13/2021	-0.48	-0.40	not measured	0.59					
3/18/2022	-0.32	-0.17	not measured	1.07					
4/11/2022	-0.61	-0.29	not measured	not measured					
6/15/2022	-0.78	-0.72	not measured	0.48					
8/31/2022	-0.78	-0.72	not measured						
9/20/2022	-1.13	-0.70	not measured	0.16					
PM-2 Police Station	-1.13	-0.91	not measured	0.10			Re	ference Point E	levation: 87.4
Depth of Screen Interval	635-655	520-540	370-390	240-260			Re	referee 1 out 12	icvation. 67.4.
Aquifer Name ¹	Sunnyside ²	Silverado	Silver/Lyn ²	Lynwood					
12/15/2021	-4.94	-0.21	0.90	1.00					
3/16/2022	-4.43	1.85	1.55	1.65					
3/25/2022	-4.54	1.86	1.42	1.67					
8/29/2022	-5.25	0.60	1.01	1.11					
9/20/2022	-5.41	0.00	0.75	0.86					
PM-3 Madrid	-3.41	0.20	0.73	0.80			P.e	ference Point E	levation: 73.1
	640-680	480-520	240-280	145-185			Re	reference Form E	ievation. 75.12
Depth of Screen Interval Aquifer Name 1	Sunnyside ²	Silverado		Gardena					
1			Lynwood						
12/13/2021	-4.37	-2.09	-2.08 -1.74	-2.04					
3/18/2022	-4.19	-1.72		-1.75					
3/29/2022	-4.07	-1.74	-1.77	-1.76					
6/6/2022	-4.33	-2.02	-1.94	-1.94					
8/24/2022	-2.75	-2.33	-2.29	-2.31					
9/20/2022	-4.87	-2.52	-2.45	-2.43			D. C	D ' (FI	.: 100.20
PM-4 Mariner	670.710	500 540	240.200	200.240			Rei	erence Point Ele	evation: 100.38
Depth of Screen Interval	670-710	500-540	340-380	200-240					
Aquifer Name 1	Sunnyside ²	Silverado	Lynwood	Gardena					
12/13/2021	0.56	-1.02	2.45	2.51					
3/16/2022	0.46	-0.22	3.16	3.26					
5/15/2022	0.01	-1.41	1.96	2.05					
6/6/2022	-0.21	-1.42	2.15	2.22					
8/28/2022	-0.89	-0.89	2.62	2.65					
9/20/2022	-0.49	-1.35	2.24	2.28					
PM-5 Columbia Park		T	ı	ı	1		Re	ference Point E	levation: 78.5'
Depth of Screen Interval	1360-1380	940-960	770-790	580-600	320-340	140-160			
Aquifer Name ¹	Pico Form. 2	Pico Form. 2	Sunnyside ²	Silverado	Lynwood ²	Gardena			
10/19/2021	-24.15	-30.51	-2.27	-0.54	2.68	2.81			
12/13/2021	-24.29	-30.45	-0.93	0.26	2.97	3.11			
3/16/2022	-24.15	-31.35	-1.89	-0.53	3.48	3.58			
5/3/2022	-24.24	-28.54	-1.92	-0.56	2.64	2.72			
6/6/2022	-24.08	-27.74	-2.10	-1.04	2.30	2.47			
8/19/2022	-24.36	-30.57	-1.71	-0.78	2.92	2.92			
9/20/2022	-24.44	-29.76	-2.55	-1.29	2.23	2.42			
PM-6 Madrona Marsh		_					Re	ference Point E	levation: 80.88
Depth of Screen Interval	1195-1235	905-925	770-790	530-550	390-410	240-260			
Aquifer Name 1	Pico Form. ²	Sunnyside ²	Sunnyside ²	Silverado	Lynwood	Lynwood			
12/13/2021			-6.63	0.59	1.56	1.94			
	-26.64	-7.17	-0.03						
3/16/2022	-26.64 -26.98	-7.17 -6.89	-5.81	1.24	2.38	2.75			
3/16/2022 4/8/2022				1.24 0.96	2.38 3.07	2.75 2.57			
	-26.98	-6.89	-5.81						
4/8/2022	-26.98 -26.10	-6.89 -6.94	-5.81 -6.28	0.96	3.07	2.57			

- 1 Unless otherwise noted, aquifer designations are based on DWR's Bulletin 104.
- 2 Aquifer designation is based on WRD's in-house interpretation.
- Shaded cell indicates the zone and measurement used in Figures 2.1 and 2.2.

TABLE 2.1 GROUNDWATER ELEVATIONS, WATER YEAR 2021 - 2022 Page 10 of 11

	ZONE 1	ZONE 2	ZONE 3	ZONE 4	ZONE 5	ZONE 6	ZONE 7	ZONE 8	ZONE 9
Rio Hondo #1								erence Point Ele	
Depth of Screen Interval	1110-1130	910-930	710-730	430-450	280-300	140-160	<u> </u>	<u> </u>	<u> </u>
Aquifer Name ¹	Pico Form. ²	Sunnyside ²	Sunnyside	Silverado	Hollydale	Gardena			
10/20/2021	36.64	34.81	34.07	28.25	34.96	38.95			
12/10/2021	35.79	33.72	32.98	27.41	34.10	38.19			
3/8/2022	42.03	41.41	40.69	36.11	43.43	47.69			
4/28/2022	38.48	38.25	37.71	33.31	41.16	45.92			
6/7/2022	36.89	36.23	36.37	31.19	39.26	44.15			
9/13/2022	31.16	29.96	29.33	26.61	34.56	38.79			
Seal Beach #1	31.10	29.90	29.33	20.01	34.30	36.79	<u>D</u>	Leference Point	Elevation: 0.06
Depth of Screen Interval	1345-1365	1160-1180	1020-1040	775-795	605-625	215-235	60-70		Elevation. 9.00
Aquifer Name 1	Sunnyside ²	Sunnyside ²	Sunnyside ²	Silverado	Lynwood ²				
•	1					Gage	Artesia		
12/17/2021	-44.10	-44.30	-44.18	-57.98	-37.22	0.80	3.04		
3/17/2022	-32.31	-32.46	-32.29	-39.15	-28.18	1.75	2.94		
4/13/2022	-22.46	-22.53	-22.35	-28.63	-23.93	3.98	4.35		
6/16/2022	-27.21	-27.38	-27.25	-47.97	-32.11	1.09	3.45		
8/16/2022	-33.11	-33.33	-33.05	-48.08	-33.89	-1.39	2.62		
9/23/2022	-35.85	-36.05	-35.87	-52.37	-37.41	-2.49	2.08		
South Gate #1	•	ı	ı	T			Ref	erence Point Ele	evation: 102.50
Depth of Screen Interval	1440-1460	1320-1340	910-930	565-585	220-240				
Aquifer Name 1	Sunnyside ²	Sunnyside ²	Silverado 2	Lynwood	Exposition 2				
10/19/2021	-16.92	-15.21	-9.55	-11.09	26.69				
12/13/2021	-16.14	-13.86	-6.63	-8.70	26.84				
3/9/2022	-9.93	-8.35	-3.53	-4.55	27.20				
5/16/2022	-9.61	-8.14	-4.11	-6.24	27.17				
6/8/2022	-10.65	-9.52	-5.03	-7.35	26.99				
9/20/2022	-14.51	-12.81	-7.77	-8.74	26.48				
9/22/2022	-14.54	-13.02	-7.98	-10.53	26.40				
South Gate #2							Ref	erence Point Ele	evation: 120.29
Depth of Screen Interval	1740-1760	1410-1430	1062-1082	670-690	410-430	205-225			
Aquifer Name 1	Sunnyside ²	Sunnyside ²	Sunnyside	Silverado ²	Hollydale	Gaspur ²			
10/21/2021	-33.89	-34.41	-35.46	-26.07	32.97	39.3			
11/16/2021	-33.66	-34.04	-34.64	-25.04	32.98	39.42			
12/8/2021	-33.32	-33.63	-34.57	-26.11	33.15	39.41			
3/17/2022	-28.51	-28.51	-31.49	-24.81	33.09	39.18			
5/17/2022	-29.60	-29.97	-32.74	-24.60	32.94	39.11			
6/14/2022	-29.99	-30.32	-33.40	-25.62	32.69	38.92			
9/15/2022	-33.48	-33.58	-34.94	-28.29	32.29	38.66			
Westchester #1	33.10	33.30	31.51	20.23	32.27	30.00	Ref	erence Point Ele	evation: 126.95
Depth of Screen Interval	740-760	560-580	455-475	310-330	215-235		Teer-	l and En	120.93
Aquifer Name 1	Pico Form. ²	Sunnyside ²	Sunnyside ²	Silverado	Jefferson				
12/17/2021	0.65	8.55	8.92	9.12	9.30				
3/14/2022	0.03		9.00	9.12	9.42				
		8.60							
5/19/2022	0.84	8.73	9.20	9.40	9.51				
6/14/2022	0.50	8.70	9.10	9.25	9.44				
9/9/2022	0.53	8.84	9.36	9.50	9.66				
9/21/2022	1.07	9.40	9.65	9.92	10.15				
Whittier #1	1100 ::			150 :		nt Elevation: 21	7.35 (Zones 1, 2	2, 4 and 5) and 2	217.81 (Zone 3)
Depth of Screen Interval	1180-1200	920-940 P: F 2	600-620	450-470	200-220				
Aquifer Name 1	Pico Form. ²	Pico Form. 2	Sunnyside	Silverado	Jefferson				
12/6/2021	102.60	102.67	95.19	95.14	194.85				
3/7/2022	102.52	102.53	96.75	95.32	195.36				
4/27/2022	102.63	102.59	96.79	95.47	195.09				
6/15/2022	102.54	102.58	96.78	95.40	194.71				
8/22/2022	102.34	102.43	96.41	95.07	194.19				
9/12/2022	102.38	102.47	96.50	95.05	194.08				

- 1 Unless otherwise noted, aquifer designations are based on DWR's Bulletin 104.
- **2** Aquifer designation is based on WRD's in-house interpretation.
- Shaded cell indicates the zone and measurement used in Figures 2.1 and 2.2.

TABLE 2.1 GROUNDWATER ELEVATIONS, WATER YEAR 2021 - 2022 Page 11 of 11

	ZONE 1	ZONE 2	ZONE 3	ZONE 4	ZONE 5	ZONE 6	ZONE 7	ZONE 8	ZONE 9
Whittier #2		•		•			Ref	erence Point Ele	evation: 167.5
Depth of Screen Interval	1370-1390	1090-1110	655-675	425-445	315-335	150-170			
Aquifer Name 1	Pico Form. ²	Pico Form. 2	Sunnyside	Silverado	Silverado	Gage ²			
12/6/2021	65.60	66.60	53.97	53.35	86.25	95.83			
3/1/2022	70.20	71.11	59.23	59.91	94.13	100.89			
3/8/2022	70.75	70.70	58.21	58.45	94.15	101.04			
6/6/2022	66.95	67.94	53.60	51.97	91.52	100.27			
9/30/2022	62.36	63.51	49.73	46.17	85.06	94.10			
Whittier Narrows #1							Ref	erence Point Ele	evation: 214.66
Depth of Screen Interval	749-769	610-629	463-483	393-402	334-344	273-283	234-243	163-173	95-105
Aquifer Name 1	Sunnyside	Sunnyside	Sunnyside	Silverado	Silverado	Lynwood	Lynwood	Gardena	Gaspur
3/14/2022	160.90	161.76	163.55	168.21	169.17	170.15	not measured	not measured	not measured
3/15/2022	not measured	not measured	not measured	not measured	not measured	not measured	170.49	169.85	170.39
9/15/2022	150.44	151.36	154.36	158.91	159.86	161.09	161.02	160.91	162.42
Whittier Narrows #2							Ref	erence Point Ele	evation: 209.15
Depth of Screen Interval	659-678	579-598	469-488	419-428	328-338	263-273	214-223	136-145	91-100
Aquifer Name 1	Pico Form. 2	Pico Form. 2	Pico Form. 2	Pico Form. 2	Pico Form. 2	Lynwood	Lynwood	Gardena ²	Gardena
3/15/2022	-21.97	-21.65	-21.51	not measured	not measured	not measured	not measured	not measured	not measured
3/16/2022	not measured	not measured	not measured	-15.67	85.99	131.73	132.64	134.39	153.98
9/15/2022	-24.10	-23.91	-23.57	-16.46	74.35	118.15	119.39	124.74	148.28
Willowbrook #1							Re	ference Point E	levation: 98.87
Depth of Screen Interval	885-905	500-520	360-380	200-220					
Aquifer Name 1	Sunnyside ²	Silverado	Lynwood	Gage					
12/15/2021	-54.84	-41.05	-45.32	-44.53					
3/17/2022	-50.40	-39.48	-39.54	-38.33					
4/26/2022	-49.59	-39.70	-42.03	-41.05					
6/7/2022	-50.28	-39.97	-42.66	-41.82					
9/2/2022	-55.35	-40.78	-44.73	-43.32					
9/30/2022	-55.34	-41.08	-45.07	-43.66					
Wilmington #1	•	•		•			Re	ference Point E	levation: 40.74
Depth of Screen Interval	915-935	780-800	550-570	225-245	120-140				
Aquifer Name 1	Sunnyside ²	Silverado	Silverado	Lynwood	Gage				
11/18/2021	-36.37	-36.76	-36.83	-9.46	-6.40				
12/15/2021	-38.96	-39.22	-39.41	-9.87	-6.79				
2/14/2022	-40.58	-40.94	-41.03	-9.90	-6.68				
3/15/2022	-40.71	-41.08	-41.11	-10.00	-6.83				
5/9/2022	-41.86	-42.18	-42.19	-9.81	-6.50				
6/14/2022	-42.88	-43.18	-43.16	-10.11	-6.75				
8/8/2022	-44.82	-45.13	-45.05	-11.36	-7.98				
9/20/2022	-40.96	-41.18	-41.18	-10.85	-7.68				
Wilmington #2							Re	ference Point E	levation: 32.30
Depth of Screen Interval	950-970	755-775	540-560	390-410	120-140				
Aquifer Name 1	Sunnyside ²	Silverado	Silverado	Lynwood	Gage				
11/9/2021	-23.04	-18.80	-14.98	-13.99	-0.41				
12/14/2021	-25.11	-20.33	-16.14	-15.06	-0.39				
3/1/2022	-24.96	-20.32	-15.93	-14.84	-0.77				
3/15/2022	-25.81	-20.67	-16.23	-15.09	-0.82				
5/3/2022	-26.57	-21.32	-16.86	-15.74	-0.72				
6/14/2022	-27.06	-21.51	-16.92	-15.76	-0.72				
	-28.45	-21.31	-18.13	-16.99	-1.09				
8/9/2022									

- 1 Unless otherwise noted, aquifer designations are based on DWR's Bulletin 104.
- 2 Aquifer designation is based on WRD's in-house interpretation.
- Shaded cell indicates the zone and measurement used in Figures 2.1 and 2.2.

PAGE LEFT INTENTIONALLY BLANK

TABLE 3.1 CENTRAL BASIN WATER QUALITY RESULTS REGIONAL GROUNDWATER MONITORING - WATER YEAR 2021-2022 Page 1 of 38

	Fell #1														
Constituents	Units	MCL	MCL Type	Zot			ne 2	Zot	ne 3	Zor	ne 4		ne 5		ne 6
General Minerals	U	M	MC	3/15/2022	8/23/2022	3/15/2022	8/23/2022	3/15/2022	8/23/2022	3/15/2022	8/23/2022	3/15/2022	8/23/2022	3/15/2022	8/23/2022
Alkalinity	mg/l			620	610	170	170	160	160	180	180	180	180	280	280
Anion Sum	meq/l			18	18	5.8	5.7	5.4	5.4	6	6	7.8	7.8	12	12
Bicarbonate as HCO3	mg/l			750	730	210	200	200	200	220	220	220	220	340	350
Boron	mg/l	1	N	1.6	1.6	0.14	0.14	0.13	0.13	0.15	0.15	0.14	0.14	0.17	0.17
Bromide	ug/l			1.2	1.2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Calcium, Total	mg/l			14.5 546	14 540	50.4	51.4	45	44.9 144	56.3 160	57.3	74.9	74.8 164	125 259	126 258
Carbon Dioxide Carbonate as CO3	mg/l mg/l			ND	17	151 ND	148 ND	146 ND	ND	ND	158 ND	165 ND	ND	ND	ND
Cation Sum	meq/l			17	17	5.5	5.5	5.2	5.1	5.7	5.8	7.5	7.4	12	12
Chloride	mg/l	500	S	190	200	24	24	31	31	30	29	57	55	100	100
Fluoride	mg/l	2	P	0.33	0.32	0.2	0.2	0.35	0.35	0.37	0.37	0.33	0.33	0.32	0.32
Hydroxide as OH, Calculated	mg/l			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Iodide	ug/l			310	280	23	20	30	28	28	24	1.9	1.7	ND	ND
Nitrate (as NO3)	mg/l	45	P	ND	ND	ND	ND	ND	ND	ND	ND	10	9	5.9	5.4
Nitrate as Nitrogen	mg/l	10	P	ND	ND	ND	ND	ND	ND	ND	ND	2.3	2	1.3	1.2
Nitrite, as Nitrogen	mg/l	1	P	ND 6.9	7.3	ND 2.7	ND 2.7	ND 3.6	ND 3.6	ND 3.4	ND 3.4	ND 3	ND 2	ND 2	ND 3.1
Potassium, Total Sodium, Total	mg/l mg/l			360	360	48	47	47	45	41	41	50	3 49	61	60
Sulfate	mg/l	500	S	ND	ND	81	81	60	60	77	78	120	120	160	160
Total Dissolved Solid (TDS)	mg/l	1000		1000	1000	340	320	300	280	340	320	440	470	690	730
Nitrate + Nitrite, as Nitrogen	mg/l	10	P	ND	ND	ND	ND	ND	ND	ND	ND	2.3	2	1.3	1.2
General Physical Properties															
Apparent Color	ACU	15	S	200	200	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hardness (Total, as CaCO3)	mg/l			60.7	59	166	169	154	153	194	197	261	260	445	448
Lab pH	Units			8.17	8.31	8	8.16	7.92	8.1	7.9	8.06	7.86	7.99	7.71	7.84
Langelier Index - 25 degree	None	_	-	0.572	0.689	0.501	0.675	0.357	0.542	0.474	0.647	0.534	0.656	0.749	0.876
Odor Specific Conductance	TON umho/cm	3 1600	S	ND 1700	1800	ND 480	ND 560	ND 460	ND 540	ND 490	ND 590	ND 650	ND 770	ND 970	ND 1100
Turbidity	NTU	5	S	0.4	0.1	ND	0.1	ND	ND	0.15	0.1	0.2	ND	0.8	0.45
Metals	NIO	- 3		0.7	0.1	ND	0.1	ND	ND	0.13	0.1	0.2	ND	0.0	0.43
Aluminum, Total	ug/l	1000	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Antimony, Total	ug/l	6	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Arsenic, Total	ug/l	10	P	ND	0.4	ND	ND	ND	ND	0.91	0.95	2.9	3.1	1.2	1.3
Barium, Total	ug/l	1000	P	19	20	36	38	36	37	78	79	230	240	140	140
Beryllium, Total	ug/l	4	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cadmium, Total	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chromium, Total	ug/l	50	P	0.7	0.74	ND	ND	ND	ND 0.16	ND	ND 0.024	1.5	1.8	4	4.3
Hexavalent Chromium (Cr VI) Copper, Total	ug/l ug/l	10	P	ND 0.58	0.19	ND ND	0.056 ND	ND ND	0.16 ND	ND ND	0.024 ND	1.6 ND	1.9 0.53	4.4	4.5 0.88
Iron, Total	mg/l	0.3	S	0.38	0.09	ND	ND	ND	ND	ND	0.087	ND	ND	ND	ND
Lead, Total	ug/l	15	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Magnesium, Total	mg/l			5.94	5.82	9.8	9.96	10.1	10	12.8	13	18.1	17.9	32.2	32.3
Manganese, Total	ug/l	50	S	28	30	72	75	50	51	69	71	2.1	1.9	ND	ND
Mercury	ug/l	2	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Nickel, Total	ug/l	100	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Selenium, Total	ug/l	50	P	ND	ND	ND	ND	ND	ND	ND	ND	4.5	4.7	4.3	4.5
Silver, Total	ug/l	100	S	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Thallium, Total Zinc, Total	ug/l ug/l	5000	P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Volatile Organic Compounds	ug/1	3000	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethylene	ug/l	6	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	ug/l	0.5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzene	ug/l	1	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Tetrachloride	ug/l	0.5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	ug/l	70	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloromethane (Methyl Chloride)	ug/l	_	Ļ.	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.05
cis-1,2-Dichloroethylene	ug/l	6	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	1 ND	0.85
Di-Isopropyl Ether Ethylbenzene	ug/l ug/l	300	P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Ethyl Tert Butyl Ether	ug/l ug/l	300	Р	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Freon 11	ug/l	150	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Freon 113	ug/l	1200	_	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene Chloride	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MTBE	ug/l	13	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Styrene	ug/l	100	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tert Amyl Methyl Ether	ug/l		Ļ	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TBA	ug/l	12	N	3.75				N							
Tetrachloroethylene (PCE)	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene Total Tribalomethanes	ug/l	150 80	P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Total Trihalomethanes trans-1,2-Dichloroethylene	ug/l ug/l	10	P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Trichloroethylene (TCE)	ug/l	5	P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	2.1	1.8	46	37
Vinyl chloride (VC)	ug/l	0.5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Xylenes (Total)	ug/l	1750		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Others	-8.											- 12			
1,4-Dioxane	ug/l	1	N	ND	ND	ND	ND	ND	ND	ND	ND	0.66	0.47	0.15	0.19
Perchlorate	ug/l	6	P	ND	ND	ND	ND	ND	ND	ND	ND	2.3	1.9	1.5	1.4
Surfactants	mg/l	0.5	S	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total Organic Carbon	mg/l	i i	i .	13	12	0.48	0.51	0.45	0.56	0.3	0.4	ND	ND	0.49	0.45

TABLE 3.1 CENTRAL BASIN WATER QUALITY RESULTS REGIONAL GROUNDWATER MONITORING - WATER YEAR 2021-2022 Page 2 of 38

			ype		1 1190 2		rdens #1		
Constituents	Units	MCL	MCL Type	Zone 1 5/23/2022	Zone 2 5/23/2022	Zone 3 5/23/2022	Zone 4 5/23/2022	Zone 5 5/23/2022	Zone 6 5/23/2022
General Minerals		_	2	3/23/2022	3/23/2022	3/23/2022	3/23/2022	3/23/2022	3/23/2022
Alkalinity	mg/l			170	160	140	110	130	140
Anion Sum	meq/l			7.5	5.5	6.9	5.2	5.9	6.5
Bicarbonate as HCO3	mg/l			200	200	170	140	160	170
Boron	mg/l	1	N	0.054	0.12	0.17	0.13	0.14	0.14
Bromide	ug/l			ND	ND	ND	ND	ND	ND
Calcium, Total	mg/l			94.7	44.1	67.6	46.1	55.6	64.7
Carbon Dioxide	mg/l			151	147	125	104	130	129
Carbonate as CO3	mg/l			ND	ND	ND	ND	ND	ND
Cation Sum	meq/l			7	5.2	6.5	4.9	5.6	6.2
Chloride	mg/l	500		54	38	68	46	53	67
Fluoride	mg/l	2	P	0.17	0.24	0.28	0.36	0.19	0.28
Hydroxide as OH, Calculated	mg/l			ND	ND	ND	ND	ND	ND
Iodide	ug/l			5.4	9.5	ND	ND	ND	ND
Nitrate (as NO3)	mg/l	45	P	ND	ND	11	10	13	14
Nitrate as Nitrogen	mg/l	10	P	ND	ND	2.5	2.3	2.8	3.1
Nitrite, as Nitrogen	mg/l	1	P	ND	ND	ND	ND	ND	ND
Potassium, Total	mg/l			2.4	2.7	3.6	3.3	3.3	3.7
Sodium, Total	mg/l			27	51	48	41	42	43
Sulfate	mg/l	500	S	130	54	98	68	71	81
Total Dissolved Solid (TDS)	mg/l	1000	S	450	300	410	310	350	390
Nitrate + Nitrite, as Nitrogen	mg/l	10	P	ND	ND	2.5	2.3	2.8	3.1
General Physical Properties	· ·								
Apparent Color	ACU	15	S	ND	ND	ND	ND	ND	ND
Hardness (Total, as CaCO3)	mg/l			289	144	215	149	183	211
Lab pH	Units			7.77	7.92	7.67	7.66	7.36	7.52
Langelier Index - 25 degree	None			0.519	0.348	0.197	-0.058	-0.215	0.033
Odor	TON	3	S	ND	ND	ND	ND	ND	ND
Specific Conductance	umho/cn			690	520	660	500	560	640
Turbidity	NTU	5	S	ND	ND	ND	ND	ND	ND
Metals	NIO	3	ы	ND	ND	ND	ND	ND	ND
Aluminum, Total	ug/l	1000	P	ND	ND	ND	ND	ND	ND
Antimony, Total		6	P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Arsenic, Total	ug/l	10	P	3.6	0.4	2.5	2.3	0.93	1.6
	ug/l			100	74	110	52		61
Barium, Total	ug/l	1000		ND	ND	ND	ND	63 ND	ND
Beryllium, Total	ug/l	4	P P	ND ND	ND ND		ND ND	ND ND	ND ND
Cadmium, Total	ug/l	5				ND 0.50			
Chromium, Total	ug/l	50	P	ND	ND 0.002	0.58	0.64	0.77	0.62
Hexavalent Chromium (Cr VI)	ug/l	10	P	0.09	0.082	0.69	0.72	0.78	0.69
Copper, Total	ug/l	1300		ND 0.04	ND	ND	ND	0.55	ND
Iron, Total	mg/l	0.3	S	0.04	ND	ND	ND	ND	ND
Lead, Total	ug/l	15	P	ND	ND	ND	ND	ND	ND
Magnesium, Total	mg/l	50		12.8	8.31	11.3	8.22	10.8	12.1
Manganese, Total	ug/l	50	S	27	40	ND	ND	ND	ND
Mercury	ug/l	2	P	ND	ND	ND	0.05	ND	ND
Nickel, Total	ug/l	100	P	ND	ND	ND	ND	ND	ND
Selenium, Total	ug/l	50	P	ND	ND	0.51	1	2.2	1.7
Silver, Total	ug/l	100	S	ND	ND	ND	ND	ND	ND
Thallium, Total	ug/l	2	P	ND	ND	ND	ND	ND	ND
Zinc, Total	ug/l	5000	S	ND	ND	ND	ND	ND	ND
Volatile Organic Compounds									
1,1-Dichloroethane	ug/l	5	P	ND	ND	ND	ND	ND	ND
1,1-Dichloroethylene	ug/l	6	P	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	ug/l	0.5	P	ND	ND	ND	ND	ND	ND
Benzene	ug/l	1	P	ND	ND	ND	ND	ND	ND
Carbon Tetrachloride	ug/l	0.5	P	ND	ND	ND	ND	ND	ND
Chlorobenzene	ug/l	70	P	ND	ND	ND	ND	ND	ND
Chloromethane (Methyl Chloride)	ug/l			ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethylene	ug/l	6	P	ND	ND	ND	ND	ND	ND
Di-Isopropyl Ether	ug/l			ND	ND	ND	ND	ND	ND
Ethylbenzene	ug/l	300	P	ND	ND	ND	ND	ND	ND
Ethyl Tert Butyl Ether	ug/l			ND	ND	ND	ND	ND	ND
Freon 11	ug/l	150	P	ND	ND	ND	ND	ND	ND
Freon 113	ug/l	1200	P	ND	ND	ND	ND	ND	ND
Methylene Chloride	ug/l	5	P	ND	ND	ND	ND	ND	ND
MTBE	ug/l	13	P	ND	ND	ND	ND	ND	ND
Styrene	ug/l	100	P	ND	ND	ND	ND	ND	ND
Tert Amyl Methyl Ether	ug/l			ND	ND	ND	ND	ND	ND
TBA	ug/l	12	N						
Tetrachloroethylene (PCE)	ug/l	5	P	ND	ND	ND	ND	ND	1
Toluene	ug/l	150	P	ND	ND	ND	ND	ND	ND
Total Trihalomethanes	ug/l	80	P	ND	ND	ND	0.9	1.5	2.6
trans-1,2-Dichloroethylene	ug/l	10	P	ND	ND	ND	ND	ND	ND
Trichloroethylene (TCE)	ug/l	5	P	ND	ND	ND	ND	ND	ND
Vinyl chloride (VC)	ug/l	0.5	P	ND	ND	ND	ND	ND	ND
Xylenes (Total)	ug/1	1750		ND ND	ND ND	ND ND	ND ND	ND	ND ND
Others	ug/I	1/30	ſ	ND	ND	IND	ND	ND	IND
1,4-Dioxane	110/1	1	N	3.9	0.54	1.2	0.23	0.37	0.73
	ug/l	6	P	3.9 ND	0.54 ND	0.53	0.23	0.37	0.73
Perchlorate	ug/l		S						
Surfactants Total Organia Conhan	mg/l	0.5	3	ND ND	ND 0.45	ND 0.60	ND 0.76	ND 0.22	ND 0.02
Total Organic Carbon	mg/l	l		ND	0.45	0.69	0.76	0.32	0.92

TABLE 3.1 CENTRAL BASIN WATER QUALITY RESULTS REGIONAL GROUNDWATER MONITORING - WATER YEAR 2021-2022 Page 3 of 38

	nts si						itos #1		
Constituents	Units	MCL	MCL Type	Zone 1 4/21/2022	Zone 2 4/21/2022	Zone 3 4/21/2022	Zone 4 4/21/2022	Zone 5 4/21/2022	Zone 6 4/21/2022
General Minerals	1	~	2	4/21/2022	4/21/2022	4/21/2022	4/21/2022	4/21/2022	4/21/2022
Alkalinity	mg/l			170	170	170	180	180	190
Anion Sum	meq/l			4.9	4.4	5.4	5.1	4.7	4.7
Bicarbonate as HCO3	mg/l			200	200	210	220	220	230
Boron	mg/l	1	N	0.09	0.059	0.091	0.089	0.089	0.082
Bromide	ug/l			0.045	0.039	0.06	0.044	ND 20.1	ND 45.2
Calcium, Total Carbon Dioxide	mg/l			36.4 148	36.6 148	41.5 155	45.6 165	39.1 165	45.3 173
Carbonate as CO3	mg/l mg/l			ND	ND	ND	ND	ND	ND
Cation Sum	meq/1			4.7	4.1	5.1	4.9	4.5	4.5
Chloride	mg/l	500	S	16	13	21	16	12	11
Fluoride	mg/l	2	P	0.24	0.3	0.36	0.48	0.41	0.29
Hydroxide as OH, Calculated	mg/l			ND	ND	ND	ND	ND	ND
Iodide	ug/l			10	17	27	18	14	85
Nitrate (as NO3)	mg/l	45	P	ND	ND	ND	ND	ND	ND
Nitrate as Nitrogen	mg/l	10	P	ND	ND	ND	ND	ND	ND
Nitrite, as Nitrogen	mg/l	1	P	ND	ND	ND	ND	ND	ND
Potassium, Total	mg/l			2.4	2.3	2.3	2.2	2.1	2.2
Sodium, Total	mg/l	500	C	56	41	55	38	40	34
Sulfate Total Disselved Solid (TDS)	mg/l	500	S	54	33	64	47	32	27
Total Dissolved Solid (TDS) Nitrate + Nitrite, as Nitrogen	mg/l	1000	S	280 ND	240 ND	280 ND	260 ND	250 ND	240 ND
General Physical Properties	mg/l	10	r	ND	ND	ND	ND	ND	ND
Apparent Color	ACU	15	S	ND	ND	ND	ND	ND	3
Hardness (Total, as CaCO3)	mg/l	13	3	111	115	130	157	137	150
Lab pH	Units			8.11	8.05	7.99	7.9	7.92	7.9
Langelier Index - 25 degree	None			0.487	0.442	0.424	0.406	0.362	0.433
Odor	TON	3	S	1	1	1	2	4	4
Specific Conductance	umho/cn			440	390	480	450	430	430
Turbidity	NTU	5	S	0.05	0.05	0.05	0.15	0.1	0.15
Metals									
Aluminum, Total	ug/l	1000	P	4.5	ND	ND	4.5	ND	ND
Antimony, Total	ug/l	6	P	ND	ND	0.094	ND	ND	ND
Arsenic, Total	ug/l	10	P	15	11	19	5.3	9.8	36
Barium, Total	ug/l	1000	_	53	110	130	65	87	100
Beryllium, Total	ug/l	4	P	ND	ND	ND	ND	ND	ND
Cadmium, Total	ug/l	5	P	ND	ND	ND	ND	ND	ND
Chromium, Total	ug/l	50	P	0.11	0.13	0.099	0.11	0.1	0.14
Hexavalent Chromium (Cr VI)	ug/l	10	P	0.046	0.044	0.036	0.014	0.058	0.051
Copper, Total Iron, Total	ug/l	0.3	P	0.24 0.0084	ND 0.024	ND 0.036	ND 0.089	ND 0.067	ND 0.098
Lead, Total	mg/l ug/l	15	P	0.0084 ND	0.024 ND	0.036 ND	0.089 ND	0.067 ND	0.098 ND
Magnesium, Total	mg/l	13	1	4.89	5.8	6.41	10.5	9.52	8.86
Manganese, Total	ug/l	50	S	28	37	48	84	120	150
Mercury	ug/l	2	P	ND	ND	0.017	ND	ND	ND
Nickel, Total	ug/l	100	P	ND	ND	ND	ND	ND	ND
Selenium, Total	ug/l	50	P	ND	ND	ND	ND	ND	ND
Silver, Total	ug/l	100	S	ND	ND	ND	ND	ND	ND
Thallium, Total	ug/l	2	P	ND	ND	ND	ND	ND	ND
Zinc, Total	ug/l	5000	S	ND	ND	ND	ND	ND	ND
Volatile Organic Compounds									
1,1-Dichloroethane	ug/l	5	P	ND	ND	ND	ND	ND	ND
1,1-Dichloroethylene	ug/l	6	P	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	ug/l	0.5	P	ND	ND	ND	ND	ND ND	ND ND
Benzene Carbon Tetrachloride	ug/l	0.5	P P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Chlorobenzene	ug/l ug/l	70	P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Chloromethane (Methyl Chloride)	ug/1 ug/1	70	Г	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
cis-1,2-Dichloroethylene	ug/l	6	P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Di-Isopropyl Ether	ug/l	J	Ė	ND	ND	ND ND	ND	ND ND	ND ND
Ethylbenzene	ug/l	300	P	ND	ND	ND	ND	ND	ND
Ethyl Tert Butyl Ether	ug/l		Ė	ND	ND	ND	ND	ND	ND
Freon 11	ug/l	150	P	ND	ND	ND	ND	ND	ND
Freon 113	ug/l	1200	P	ND	ND	ND	ND	ND	ND
Methylene Chloride	ug/l	5	P	ND	ND	ND	ND	ND	ND
MTBE	ug/l	13	P	ND	ND	ND	ND	ND	ND
Styrene	ug/l	100	P	ND	ND	ND	ND	ND	ND
Tert Amyl Methyl Ether	ug/l			ND	ND	ND	ND	ND	ND
TBA	ug/l	12	N						
Tetrachloroethylene (PCE)	ug/l	5	P	ND	ND	ND	ND	ND	ND
Toluene	ug/l	150	P	ND	ND	ND	ND	ND	ND
Total Trihalomethanes	ug/l	80	P	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethylene	ug/l	10	P	ND	ND	ND	ND	ND ND	ND ND
Trichloroethylene (TCE)	ug/l	5	P	ND	ND	ND	ND	ND ND	ND ND
Vinyl chloride (VC)	ug/l	0.5	P	ND	ND	ND	ND	ND	ND ND
Xylenes (Total)	ug/l	1750	Р	ND	ND	ND	ND	ND	ND
Others 1,4-Dioxane	no/1	1	N	ND	MD	ND	ND	ND	ND
Perchlorate	ug/l ug/l	6	P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Surfactants	mg/l	0.5	S	0.014	0.02	0.014	0.013	0.014	0.014
Total Organic Carbon	mg/l	0.5	د	0.014	0.43	0.014	0.013	0.37	0.41
10mi Oiguine Curbon	g/1			0.23	U.T.	0.27	0.57	0.31	U.T1

TABLE 3.1 CENTRAL BASIN WATER QUALITY RESULTS REGIONAL GROUNDWATER MONITORING - WATER YEAR 2021-2022 Page 4 of 38

			Cerritos #2												
Constituents	Units	MCL	MCL Type	Zor 4/20/2022	ne 1 9/1/2022	Zor 4/20/2022	ne 2 9/1/2022	Zor 4/20/2022	ne 3 9/1/2022	Zor 4/20/2022	ne 4 9/1/2022	Zor 4/20/2022	ne 5 9/1/2022	Zor 4/20/2022	ne 6 9/1/2022
General Minerals	_	Ľ	_	4/20/2022	9/1/2022	4/20/2022	9/1/2022	4/20/2022	9/1/2022	4/20/2022	3/1/2022	4/20/2022	9/1/2022	4/20/2022	9/1/2022
Alkalinity	mg/l			150	150	170	170	170	160	190	180	190	180	350	340
Anion Sum	meq/l			3.7	3.7	8.3	8.2	3.9	3.8	4.3	4.2	4.3	4.2	12	12
Bicarbonate as HCO3	mg/l			180	180	210	200	210	200	230	220	230	220	430	410
Boron	mg/l	1	N	0.058	0.056	0.17	0.17	0.064	0.063	0.079	0.077	0.076	0.075	0.1	0.1
Bromide	ug/l			ND 42.6	ND 42.2	0.1	ND 04	ND 45.2	ND	ND 52.2	ND	ND	ND 51.2	0.19	ND
Calcium, Total Carbon Dioxide	mg/l mg/l			42.6 137	42.3 136	84.5 156	84 149	45.2 151	45.6 144	52.3 167	51.7 160	50.7 167	51.3 160	144 323	146 307
Carbonate as CO3	mg/l			ND											
Cation Sum	meq/l			3.7	3.7	7.8	7.8	3.8	3.8	4.3	4.2	4.1	4.1	12	12
Chloride	mg/l	500	S	6.6	6.6	80	79	5.9	5.8	6.8	6.7	6.6	6.5	77	79
Fluoride	mg/l	2	P	0.25	0.25	0.33	0.34	0.25	0.26	0.36	0.37	0.3	0.31	0.3	0.3
Hydroxide as OH, Calculated	mg/l			ND											
Iodide	ug/l			1.4	1.4	5.2	5.4	4	3.8	4.1	4.8	5.4	4.8	14	15
Nitrate (as NO3)	mg/l	45	P	0.23	ND	13	13	ND							
Nitrate as Nitrogen	mg/l	10	P	0.053	ND	3	3	ND							
Nitrite, as Nitrogen	mg/l	1	P	ND											
Potassium, Total	mg/l		-	3	2.8	4.6	4.4	2.6	2.6	2.9	2.7	2.9	2.8	4.5	4.5
Sodium, Total	mg/l	500	C	25	24	50	51	22	22	21	20	21	21	46	47
Sulfate Total Disselved Solid (TDS)	mg/l	500	S	22	23	110	120	17	18 220	19	19	17	18 230	160	160
Total Dissolved Solid (TDS) Nitrate + Nitrite, as Nitrogen	mg/l mg/l	1000	S	200 0.053	210 ND	440 3	500	190 ND	ND	210 ND	250 ND	200 ND	ND	660 ND	740 ND
General Physical Properties	mg/I	10	Г	0.055	ND	3	3	ND							
Apparent Color	ACU	15	S	ND	7.5	5									
Hardness (Total, as CaCO3)	mg/l			128	127	276	273	138	138	166	162	155	157	478	482
Lab pH	Units			7.84	7.96	7.73	7.88	8	8.15	7.94	8.1	7.94	8.1	7.61	7.87
Langelier Index - 25 degree	None			0.258	0.371	0.431	0.565	0.502	0.618	0.546	0.663	0.536	0.667	0.813	1.05
Odor	TON	3	S	1	ND	1	ND	4	ND	2	ND	2	ND	2	ND
Specific Conductance	ımho/cn	1600		370	360	820	820	380	380	420	430	420	420	1200	1200
Turbidity	NTU	5	S	ND	ND	ND	0.1	0.05	0.1	ND	0.1	ND	0.2	1.6	2.3
Metals															
Aluminum, Total	ug/l	1000		ND											
Antimony, Total	ug/l	6	P	0.12	ND	0.13	ND								
Arsenic, Total	ug/l	10	P	2.2	2.3	1.9	1.9	3.1	3.1	7.1	7	16	16	3.7	3.7
Barium, Total	ug/l	1000	_	110	110	120	120	120	120	160	160	180	170	130	130
Beryllium, Total	ug/l	4	P	ND	ND	ND ND	ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND	ND ND
Cadmium, Total Chromium, Total	ug/l ug/l	50	P	ND 0.37	ND 0.38	0.73	ND 0.73	0.14	ND ND	ND 0.13	ND ND	0.089	ND ND	ND ND	ND ND
Hexavalent Chromium (Cr VI)	ug/l ug/l	10	P	0.37	0.38	0.76	0.73	0.056	0.1	0.13	0.074	0.036	0.072	ND	ND
Copper, Total	ug/l	1300	_	ND	ND	0.76	0.53	ND	ND	ND	ND	ND	ND	ND ND	ND
Iron, Total	mg/l	0.3	S	0.0062	ND	ND	ND	0.023	ND	0.042	0.041	0.079	0.077	0.38	0.39
Lead, Total	ug/l	15	P	ND	0.091	ND	ND	ND							
Magnesium, Total	mg/l			5.34	5.13	15.8	15.3	5.98	5.82	8.47	8.11	7.02	6.88	28.6	28.2
Manganese, Total	ug/l	50	S	5.6	5.5	1.4	1.3	42	41	93	95	110	110	270	280
Mercury	ug/l	2	P	ND											
Nickel, Total	ug/l	100	P	ND	ND	1	ND								
Selenium, Total	ug/l	50	P	0.12	ND	0.08	ND								
Silver, Total	ug/l	100	S	ND											
Thallium, Total	ug/l	2	P	ND											
Zinc, Total	ug/l	5000	S	ND											
Volatile Organic Compounds	/1	_	D	ND	NID	MD	MD	MD	MD	MD	MD	ND	ND	ND	NID
1,1-Dichloroethane 1,1-Dichloroethylene	ug/l ug/l	6	P	ND ND											
1,2-Dichloroethane	ug/l	0.5	P	ND ND	ND										
Benzene	ug/l ug/l	1	P	ND ND	ND	ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND
Carbon Tetrachloride	ug/l	0.5	P	ND											
Chlorobenzene	ug/l	70	P	ND											
Chloromethane (Methyl Chloride)	ug/l			ND											
cis-1,2-Dichloroethylene	ug/l	6	P	ND											
Di-Isopropyl Ether	ug/l			ND											
Ethylbenzene	ug/l	300	P	ND											
Ethyl Tert Butyl Ether	ug/l			ND											
Freon 11	ug/l	150	P	ND											
Freon 113	ug/l	1200		ND											
Methylene Chloride	ug/l	5	P	ND											
MTBE Styrong	ug/l	13	P	ND ND	ND	ND ND	ND ND	ND ND	ND						
Styrene Tert Amyl Methyl Ether	ug/l	100	P	ND ND											
TBA	ug/l ug/l	12	N	ND											
Tetrachloroethylene (PCE)	ug/l	5	P	ND											
Toluene	ug/l	150	P	ND											
Total Trihalomethanes	ug/l	80	P	ND											
trans-1,2-Dichloroethylene	ug/l	10	P	ND											
Trichloroethylene (TCE)	ug/l	5	P	ND											
Vinyl chloride (VC)	ug/l	0.5	P	ND											
Xylenes (Total)	ug/l	1750	_	ND											
Others															
1,4-Dioxane	ug/l	1	N	ND	ND	2.5	2.6	ND	ND	ND	ND	ND	ND	0.037	ND
Perchlorate	ug/l	6	P	ND	ND	0.61	0.62	ND							
Surfactants	mg/l	0.5	S	0.02	ND	0.021	ND	0.017	ND	0.015	ND	0.021	ND	0.021	ND
Total Organic Carbon	mg/l			0.24	ND	0.52	0.51	0.24	ND	0.26	0.33	0.38	0.33	1.1	0.94

TABLE 3.1 CENTRAL BASIN WATER QUALITY RESULTS REGIONAL GROUNDWATER MONITORING - WATER YEAR 2021-2022 Page 5 of 38

			ype							Cerri	tos #3						
Constituents	Units	MCL	MCL Type	Zor 2/10/2022		Zor 2/10/2022	ne 2 7/18/2022	Zor 2/10/2022	ne 3 7/18/2022	Zo: 2/11/2022	ne 4 7/18/2022		ne 5 7/18/2022	Zo 2/11/2022	ne 6	Zor 2/11/2022	ne 7 7/18/2022
General Minerals																	
Alkalinity	mg/l			230	7.1	170	160	140	140	230	220	180 4.9	160	230	220	180	180 5.9
Anion Sum Bicarbonate as HCO3	meq/l mg/l			7.3 290	270	200	3.9 180	5.6 170	5.6 160	7.1 280	6.5 250	220	4.5 200	7.2 280	7.1 260	6.1 220	220
Boron	mg/l	1	N	0.25	0.25	0.12	0.12	0.11	0.11	0.24	0.22	0.12	0.11	0.24	0.23	0.085	0.084
Bromide	ug/l			0.21	ND	0.068	ND	0.094	ND	0.2	ND	0.095	ND	0.21	ND	0.13	ND
Calcium, Total	mg/l			11.9	11.9	9.64	9.32	13.8	14	12	10.6	19.7	19.1	12.6	14.5	53.6	53.4
Carbon Dioxide	mg/l			ND	198	ND	143	ND	123	ND	190	ND	143	ND	194	5.79	158
Carbonate as CO3 Cation Sum	mg/l meg/l			ND 6.6	ND 6.7	4.2 3.9	3.8	2.4 5.2	5.3	ND 6.6	6.2	ND 4.6	ND 4.4	ND 6.6	9.3	ND 5.9	ND 5.7
Chloride	mg/l	500	S	60	60	20	20	3.2	3.3	56	47	21	19	58	56	41	40
Fluoride	mg/l	2	P	0.22	0.23	0.55	0.54	0.58	0.56	0.25	0.29	0.21	0.21	0.22	0.23	0.31	0.31
Hydroxide as OH, Calculated	mg/l			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Iodide	ug/l		_	79	62	23	14	37	27	77	48	49	36	81	51	28	21
Nitrate (as NO3) Nitrate as Nitrogen	mg/l mg/l	45 10	P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Nitrite, as Nitrogen	mg/l	10	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Potassium, Total	mg/l		Ė	1.6	1.8	1.5	1.5	1.8	1.9	2	2	3.5	4.3	1.8	2.1	4.1	4
Sodium, Total	mg/l			130	130	75	74	100	100	130	120	75	70	130	130	56	53
Sulfate	mg/l	500	S	43	43	1.7	1.3	89	89	42	38	32	34	45	51	60	57
Total Dissolved Solid (TDS)	mg/l	1000	S	430 ND	400 ND	250 ND	220 ND	360 ND	330 ND	430 ND	370 ND	310 ND	260 ND	430 ND	400 ND	360 ND	330 ND
Nitrate + Nitrite, as Nitrogen General Physical Properties	mg/l	10	Р	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Apparent Color	ACU	15	S	5	5	25	30	4	4	7.5	5	7.5	5	5	5	4	ND
Hardness (Total, as CaCO3)	mg/l			40.3	39.6	27.6	26.6	38.1	38.4	39.9	34.8	62.4	63.5	42.2	47.4	169	166
Lab pH	Units			8.25	8.43	8.34	8.59	8.31	8.52	8.18	8.42	8.13	8.19	8.2	8.39	7.8	8.04
Langelier Index - 25 degree	None	-		0.232	0.419	0.148	0.366	0.158	0.381	0.166	0.347	0.256	0.266	0.207	0.445	0.348	0.594
Odor Specific Conductance	TON umho/cm	3 1600	S	690	ND 670	380	ND 370	1 540	ND 540	670	ND 610	460	ND 430	700	ND 670	570	ND 560
Turbidity	NTU	5	S	0.1	ND	0.25	0.15	0.05	ND	1	2	18	3.1	0.95	0.8	1.9	1
Metals						0.20	****	0.00			_		0.12				
Aluminum, Total	ug/l	1000		10	ND	17	ND	10	ND	9	ND	300	ND	9	ND	8.5	ND
Antimony, Total	ug/l	6	P	ND	ND	ND	ND	ND	ND	ND	ND	0.16	ND	0.093	ND	0.15	ND
Arsenic, Total Barium, Total	ug/l ug/l	10 1000	P P	ND 9	ND 9,5	0.56 3.5	0.63 4.2	11 21	10 22	1.8	1.8	13 33	12 36	5 14	7.6	31 34	25 34
Beryllium, Total	ug/l	4	P	ND	ND	ND	ND	ND	ND	ND	ND	0.043	ND	ND	ND	ND	ND
Cadmium, Total	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chromium, Total	ug/l	50	P	ND	ND	0.13	ND	ND	ND	0.17	ND	0.26	ND	0.12	ND	ND	ND
Hexavalent Chromium (Cr VI)	ug/l	10	P	0.12	ND	0.11	ND	0.033	ND	0.12	ND	0.021	ND	0.027	ND	0.0097	ND
Copper, Total	ug/l	1300		ND 0.012	0.66	ND	ND	ND	ND	ND 0.0058	ND	1.9 0.15	ND	ND 0.0091	ND	0.3	ND
Iron, Total Lead, Total	mg/l ug/l	0.3	S	0.012 ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.0038 ND	ND ND	0.13	ND ND	0.0091 ND	ND ND	0.007 ND	ND ND
Magnesium, Total	mg/l	13	1	2.55	2.41	0.865	0.808	0.907	0.843	2.41	2.03	3.21	3.83	2.58	2.73	8.47	8.02
Manganese, Total	ug/l	50	S	3.6	3.7	4.5	4.8	5.8	6.6	17	15	60	96	20	30	60	66
Mercury	ug/l	2	P	0.021	ND	0.022	ND	ND	ND	ND	ND	ND	ND	0.052	ND	0.026	ND
Nickel, Total	ug/l	100	P	ND	ND	ND	ND	ND	ND	ND	ND	0.45	ND	0.17	ND	0.17	ND
Selenium, Total Silver, Total	ug/l ug/l	50 100	P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Thallium, Total	ug/l	2	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Zinc, Total	ug/l	5000		ND	ND	ND	ND	ND	ND	ND	ND	2.2	ND	7.3	ND	ND	ND
Volatile Organic Compounds																	
1,1-Dichloroethane	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethylene 1,2-Dichloroethane	ug/l ug/l	0.5	P P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Benzene	ug/1 ug/1	1	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Tetrachloride	ug/l	0.5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	ug/l	70	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloromethane (Methyl Chloride)	ug/l		Ļ	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethylene	ug/l	6	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Di-Isopropyl Ether Ethylbenzene	ug/l ug/l	300	P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Ethyl Tert Butyl Ether	ug/l	500	Ė	1112	ND	1110	ND	1,10	ND	1417	ND	1415	ND	1117	ND	1415	ND
Freon 11	ug/l	150	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Freon 113	ug/l	1200		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene Chloride	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MTBE Styrene	ug/l ug/l	13	P P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Tert Amyl Methyl Ether	ug/1 ug/1	100	Г	ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND
TBA	ug/l	12	N	0.66		0.64		0.49		0.53		0.47	- 1.2	0.51		0.5	
Tetrachloroethylene (PCE)	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	ug/l	150	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total Trihalomethanes	ug/l	80	P	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
trans-1,2-Dichloroethylene Trichloroethylene (TCE)	ug/l ug/l	10	P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Vinyl chloride (VC)	ug/l	0.5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Xylenes (Total)	ug/l	1750		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Others																	
1,4-Dioxane	ug/l	1	N	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.02	ND	ND	ND	ND	ND
Perchlorate	ug/l	6	P	ND 0.017	ND ND	ND 0.02	ND ND	ND 0.015	ND ND	ND 0.02	ND ND	0.92 ND	ND ND	ND 0.02	ND ND	ND 0.017	ND ND
Surfactants Total Organic Carbon	mg/l mg/l	0.5	8	1.1	ND 1.1	1.9	ND 1.9	0.015	0.6	1.2	1.3	1 1	1.2	1.1	1.5	0.017	0.6
Organic Caroon	-115/1	ı	-	1.1	1.1	1.7	1./	0.0	0.0	1.5	1.3	<u> </u>	1	1 1.1	1.3	V./	3.0

TABLE 3.1 CENTRAL BASIN WATER QUALITY RESULTS REGIONAL GROUNDWATER MONITORING - WATER YEAR 2021-2022 Page 6 of 38

),be					Commerce #1								
Constituents	Units	MCL	MCL Type	Zone 1	Zone 2	Zone 3	Zone 4	Zone 5	Zone 6					
General Minerals	ū	Σ	Ň	8/29/2022	4/18/2022	4/18/2022	4/18/2022	4/18/2022	4/18/2022					
Alkalinity	mg/l			470	320	250	200	190	220					
Anion Sum	meq/l			250	11	8.7	8.5	11	9.5					
Bicarbonate as HCO3	mg/l			570	390	310	240	230	260					
Boron	mg/l	1	N	6.6	0.7	0.25	0.24	0.26	0.13					
Bromide	ug/l			ND	0.78	ND	ND	0.76	ND					
Calcium, Total	mg/l			170	43.8	56.9	42.6	59.3	88.6					
Carbon Dioxide	mg/l			423 ND	284 ND	226	177 ND	170 ND	196 ND					
Carbonate as CO3 Cation Sum	mg/l meq/l			220	ND 10	ND 8.3	7.8	11	9.1					
Chloride	mg/l	500	S	8500	160	120	86	200	100					
Fluoride	mg/l	2	P	ND	0.36	0.3	0.44	0.32	0.35					
Hydroxide as OH, Calculated	mg/l		Ė	ND	ND	ND	ND	ND	ND					
Iodide	ug/l			9500	240	160	55	130	ND					
Nitrate (as NO3)	mg/l	45	P	ND	ND	ND	ND	20	42					
Nitrate as Nitrogen	mg/l	10	P	ND	ND	ND	ND	4.5	9.4					
Nitrite, as Nitrogen	mg/l	1	P	ND	ND	ND	ND	ND	ND					
Potassium, Total	mg/l			89	6.4	4.1	3.9	3.5	2.5					
Sodium, Total	mg/l			4500	150	86	95	140	54					
Sulfate	mg/l	500	S	3.3	1.6	18	100	65	79					
Total Dissolved Solid (TDS)	mg/l	1000	S	14000	610	460	460	630	550					
Nitrate + Nitrite, as Nitrogen	mg/l	10	P	ND	ND	ND	ND	4.5	9.4					
General Physical Properties	ACTI	1.5	C	(2	20	2	2	2	ND					
Apparent Color Hardness (Total, as CaCO3)	ACU mg/l	15	S	62 1000	30 191	3 220	3 178	3 223	ND 332					
	mg/l				8	7.99	7.95	7.83	7.75					
Lab pH Langelier Index - 25 degree	Units None			7.86 0.863	0.656	0.682	0.42	0.387	0.561					
Odor	TON	3	S	0.863 4	2	0.682 8	0.42 ND	4	0.561 ND					
Specific Conductance	umho/cn			23000	1100	850	810	1100	920					
Turbidity	NTU	5	S	11	ND	ND	ND	0.1	0.2					
Metals	1110				112	11.5	1.12	0.1	0.2					
Aluminum, Total	ug/l	1000	P	ND	ND	ND	ND	ND	ND					
Antimony, Total	ug/l	6	P	ND	ND	ND	ND	ND	ND					
Arsenic, Total	ug/l	10	P	3.7	ND	ND	ND	1.2	0.46					
Barium, Total	ug/l	1000	P	670	67	86	220	66	81					
Beryllium, Total	ug/l	4	P	ND	ND	ND	ND	ND	ND					
Cadmium, Total	ug/l	5	P	ND	ND	ND	ND	ND	ND					
Chromium, Total	ug/l	50	P	0.53	0.29	ND	ND	6.3	11					
Hexavalent Chromium (Cr VI)	ug/l	10	P	ND	0.34	0.097	0.053	7.1	12					
Copper, Total	ug/l	1300		ND	ND	ND	ND	ND	ND					
Iron, Total	mg/l	0.3	S	1	ND	ND	0.083	ND	ND					
Lead, Total	ug/l	15	P	ND	ND	ND	ND	ND	ND					
Magnesium, Total	mg/l			140	19.8	19.1	17.3	18.2	27					
Manganese, Total	ug/l	50	S	110	7.9	47	58	73	ND					
Mercury	ug/l	2	P	ND	ND	ND	ND	ND	ND					
Nickel, Total	ug/l	100	P	ND	ND	ND	ND	ND 0.79	ND 0.82					
Selenium, Total Silver, Total	ug/l	50 100	P	ND ND	ND ND	ND ND	ND ND	0.78 ND	0.82 ND					
Thallium, Total	ug/l ug/l	2	P	ND ND	ND	ND ND	ND	ND ND	ND					
Zinc, Total	ug/l	5000	S	ND	ND	ND ND	ND	ND	ND ND					
Volatile Organic Compounds	ug/1	3000	D.	ND	ND	ND	ND	ND	ND					
1.1-Dichloroethane	ug/l	5	P	ND	ND	ND	ND	ND	ND					
1,1-Dichloroethylene	ug/l	6	P	ND	ND	ND	ND	0.68	ND					
1,2-Dichloroethane	ug/l	0.5	P	ND	ND	ND	ND	ND	ND					
Benzene	ug/l	1	P	ND	ND	ND	ND	ND	ND					
Carbon Tetrachloride	ug/l	0.5	P	ND	ND	ND	ND	0.55	ND					
Chlorobenzene	ug/l	70	P	ND	ND	ND	ND	ND	ND					
Chloromethane (Methyl Chloride)	ug/l			ND	ND	ND	ND	ND	ND					
cis-1,2-Dichloroethylene	ug/l	6	P	ND	ND	ND	ND	ND	ND					
Di-Isopropyl Ether	ug/l			ND	ND	ND	ND	ND	ND					
Ethylbenzene	ug/l	300	P	ND	ND	ND	ND	ND	ND					
Ethyl Tert Butyl Ether	ug/l	l		ND	ND	ND	ND	ND	ND					
Freon 11	ug/l	150	P	ND	ND	ND	ND	ND	ND					
Freon 113	ug/l	1200		ND	ND	ND	ND	ND ND	ND ND					
Methylene Chloride	ug/l	5	P	ND	ND	ND	ND	ND	ND					
MTBE	ug/l	13	P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND					
Styrene Tert Amyl Methyl Ether	ug/l	100	P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND					
TBA	ug/l ug/l	12	N	ND	ND	ND	ND	ND	ND					
Tetrachloroethylene (PCE)	ug/1	5	P	ND	ND	ND	ND	1.7	ND					
Toluene	ug/l ug/l	150	P	ND ND	ND ND	ND ND	ND ND	ND	ND ND					
Total Trihalomethanes	ug/1	80	P	ND ND	ND ND	ND ND	ND ND	0.53	1.4					
trans-1,2-Dichloroethylene	ug/l	10	P	ND	ND	ND	ND	ND	ND					
Trichloroethylene (TCE)	ug/l	5	P	ND	ND	ND	ND	5.2	ND					
Vinyl chloride (VC)	ug/l	0.5	P	ND	ND	ND	ND	ND	ND					
Xylenes (Total)	ug/l	1750		ND	ND	ND	ND	ND	ND					
Others	g/1	-,50		.,2	1,2		.,,,	1,2	.,,,					
1,4-Dioxane	ug/l	1	N	0.13	ND	ND	5.3	1.2	ND					
Perchlorate	ug/l	6	P	ND	ND	ND	ND	2.5	4.4					
Surfactants	mg/l	0.5	S	0.068	ND	ND	ND	ND	ND					
Total Organic Carbon	mg/l			40	5	1.5	0.87	1.2	0.44					
				.0		1.0	1 2.07	ı						

TABLE 3.1 CENTRAL BASIN WATER QUALITY RESULTS REGIONAL GROUNDWATER MONITORING - WATER YEAR 2021-2022 Page 7 of 38

			ype			- ugo / or o	Compton #1						
Constituents	Units	MCL	MCL Type	Zor 4/4/2022	ne 1 8/23/2022	Zo: 4/4/2022	ne 2 8/23/2022		ne 3 8/23/2022	Zo 4/4/2022	ne 4 8/23/2022		
General Minerals													
Alkalinity	mg/l			120	120	150	150	160	160	180	170		
Anion Sum	meq/l			4.4	4.4	4.8	4.8	5.3	5.3	5.8	5.8		
Bicarbonate as HCO3	mg/l		N.	150	140	180	180	200	200	210	210		
Boron	mg/l	- 1	N	0.15	0.15	0.1	0.1	0.11	0.11	0.09	0.094		
Bromide	ug/l			ND	ND	ND 26.5	ND 27	ND 47.7	ND 40	ND (0.4	ND		
Calcium, Total Carbon Dioxide	mg/l			21.4 109	21.9 106	36.5 129	37 128	47.7 147	49 142	60.4 157	61.6 156		
Carbonate as CO3	mg/l mg/l			ND	ND	ND	ND	ND	ND	ND	ND		
Cation Sum	meq/1			3.9	4.1	4.4	4.5	4.8	5	5.4	5.5		
Chloride	mg/l	500	S	21	21	24	24	26	26	23	23		
Fluoride	mg/l	2	P	0.26	0.27	0.3	0.31	0.25	0.27	0.23	0.24		
Hydroxide as OH, Calculated	mg/l	_		ND	ND	ND	ND	ND	ND	ND	ND		
Iodide	ug/l			23	21	26	24	34	29	26	21		
Nitrate (as NO3)	mg/l	45	P	ND	ND	ND	ND	ND	ND	ND	ND		
Nitrate as Nitrogen	mg/l	10	P	ND	ND	ND	ND	ND	ND	ND	ND		
Nitrite, as Nitrogen	mg/l	1	P	ND	ND	ND	ND	ND	ND	ND	ND		
Potassium, Total	mg/l			1.6	1.8	1.7	1.9	2.6	2.8	2.5	2.7		
Sodium, Total	mg/l			62	64	52	53	40	41	42	43		
Sulfate	mg/l	500	S	64	66	57	58	62	63	76	77		
Total Dissolved Solid (TDS)	mg/l	1000	S	260	250	280	280	310	310	340	320		
Nitrate + Nitrite, as Nitrogen	mg/l	10	P	ND	ND	ND	ND	ND	ND	ND	ND		
General Physical Properties													
Apparent Color	ACU	15	S	12	12	4	5	4	ND 150	ND 176	ND		
Hardness (Total, as CaCO3)	mg/l			60.3	62	103	105	153	158	176	180		
Lab pH	Units			8.25	8.34	8.23	8.29	8.14	8.18	8.05	8.06		
Langelier Index - 25 degree	None	-	-	0.25	0.353	0.553	0.619	0.599	0.65	0.654	0.654		
Odor	TON	3	S	ND	ND 420	ND 490	2	ND 540	2	ND 500	2		
Specific Conductance	amho/cm	1600		460 ND	430 ND	490 ND	460 0.1	540	500	580 0.15	530		
Turbidity	NTU	5	S	ND	ND	ND	0.1	ND	0.1	0.15	0.4		
Metals Aluminum, Total	/1	1000	D	ND	ND	ND	NID	NID	ND	ND	ND		
,	ug/l	1000	P P	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND ND		
Antimony, Total Arsenic, Total	ug/l	10	P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 15	16		
Barium, Total	ug/l ug/l	1000	_	7.4	7.5	11	11	62	66	160	170		
Beryllium, Total	ug/1	4	P	ND	ND	ND	ND	ND	ND	ND	ND		
Cadmium, Total	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND		
Chromium, Total	ug/l	50	P	0.45	ND	ND	ND	ND	ND	ND	0.22		
Hexavalent Chromium (Cr VI)	ug/l	10	P	0.16	0.1	0.087	0.079	0.057	ND	0.044	ND		
Copper, Total	ug/l	1300	_	ND	ND	ND	ND	ND	ND	ND	ND		
Iron, Total	mg/l	0.3	S	ND	ND	ND	ND	ND	ND	0.07	0.071		
Lead, Total	ug/l	15	P	ND	ND	ND	ND	ND	ND	ND	ND		
Magnesium, Total	mg/l			1.65	1.75	2.96	3.1	8.15	8.63	6.02	6.37		
Manganese, Total	ug/l	50	S	7.7	7.9	16	16	48	48	76	76		
Mercury	ug/l	2	P	ND	0.084	ND	0.068	ND	0.087	ND	0.09		
Nickel, Total	ug/l	100	P	ND	ND	ND	ND	ND	ND	ND	ND		
Selenium, Total	ug/l	50	P	ND	ND	ND	ND	ND	ND	ND	ND		
Silver, Total	ug/l	100	S	ND	ND	ND	ND	ND	ND	ND	ND		
Thallium, Total	ug/l	2	P	ND	ND	ND	ND	ND	ND	ND	ND		
Zinc, Total	ug/l	5000	S	ND	ND	ND	ND	ND	ND	ND	ND		
Volatile Organic Compounds													
1,1-Dichloroethane	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND		
1,1-Dichloroethylene	ug/l	6	P	ND	ND	ND	ND	ND	ND	ND	ND		
1,2-Dichloroethane	ug/l	0.5	P	ND	ND	ND	ND	ND	ND	ND	ND		
Benzene	ug/l	1	P	ND	ND	ND	ND	ND	ND	ND	ND		
Carbon Tetrachloride	ug/l	0.5	P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND		
Chlorobenzene Chloromethane (Methyl Chloride)	ug/l	70	P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND		
cis-1,2-Dichloroethylene	ug/l ug/l	6	P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND		
Di-Isopropyl Ether	ug/l ug/l	U	ľ	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND		
Ethylbenzene	ug/l	300	P	ND	ND	ND	ND	ND ND	ND ND	ND	ND ND		
Ethyl Tert Butyl Ether	ug/l	500	Ė	ND	ND	ND	ND	ND	ND	ND	ND		
Freon 11	ug/l	150	P	ND	ND	ND	ND	ND	ND	ND	ND		
Freon 113	ug/l	1200	_	ND	ND	ND	ND	ND	ND	ND	ND		
Methylene Chloride	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND		
MTBE	ug/l	13	P	ND	ND	ND	ND	ND	ND	ND	ND		
Styrene	ug/l	100	P	ND	ND	ND	ND	ND	ND	ND	ND		
Tert Amyl Methyl Ethei	ug/l			ND	ND	ND	ND	ND	ND	ND	ND		
TBA	ug/l	12	N										
Tetrachloroethylene (PCE)	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND		
Toluene	ug/l	150	P	ND	ND	ND	ND	ND	ND	ND	ND		
Total Trihalomethanes	ug/l	80	P	ND	ND	ND	ND	ND	ND	ND	ND		
trans-1,2-Dichloroethylene	ug/l	10	P	ND	ND	ND	ND	ND	ND	ND	ND		
Trichloroethylene (TCE)	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND		
Vinyl chloride (VC)	ug/l	0.5	P	ND	ND	ND	ND	ND	ND	ND	ND		
Xylenes (Total)	ug/l	1750	P	ND	ND	ND	ND	ND	ND	ND	ND		
Others			لــا			·							
1,4-Dioxane	ug/l	1	N	ND	ND	ND	ND	ND	ND	ND	ND		
Perchlorate	ug/l	6	P	ND	ND	ND	ND	ND	ND	ND	ND		
Surfactants	mg/l	0.5	S	ND	ND	ND	ND	ND	ND	ND	ND		
Total Organic Carbon	mg/l	1	1	1.3	1.2	0.86	0.79	0.62	0.55	0.35	0.33		

TABLE 3.1 CENTRAL BASIN WATER QUALITY RESULTS REGIONAL GROUNDWATER MONITORING - WATER YEAR 2021-2022 Page 8 of 38

Constituents), yp				Compton #2									
Second Company Compa	Constituents	nits	ICL	CLT			Zone 3	Zone 4							
Maladary	Canaral Minarals	n	Σ	N	5/20/2022	5/20/2022	5/20/2022	5/20/2022	5/20/2022	5/20/2022					
April	Alkalinity	mg/l			480	280	170	190	190	190					
Section Sect	Anion Sum														
No. No.	Bicarbonate as HCO3	mg/l													
Albania Protein Albania Pr	Boron		1	N											
Selection Process Pr															
Sebante (CO)															
Section															
The content map 100 S 16															
Note			500	S											
Spensor Spen	Fluoride														
Section Color Co	Hydroxide as OH, Calculated			Ė											
Simes as Nimogen mg 10 P ND ND ND ND ND ND ND	Iodide				43	13	19	22	20	1.1					
Nimes on Numpers mg 1 P	Nitrate (as NO3)	mg/l	45	P	ND	ND	ND	ND		5.8					
Seasons Fold mg	Nitrate as Nitrogen	mg/l	10	P	ND	ND	ND	ND	ND	1.3					
Sodim. Food mg3	Nitrite, as Nitrogen	mg/l	1	P											
subset	Potassium, Total														
Total Passoval Scient (TDS) mg 100 8 570 330 290 370 380 480	Sodium, Total			Ļ											
Similar Ni Nirole, as Nirologo mg/l 10 P ND ND ND ND ND 1.3 Supersect Clobe	Sulfate														
		mg/l	10	P	ND	ND	ND	ND	ND	1.3					
Infineers (Total, as CaCO3)		ACII	15	C	100	20	2	ND	NID	ND					
April			13	5											
August angles in flows 25 degree None															
No. No.															
Specific Conductance			3	S											
Section Color Co															
Nummarn, Total	Metals	1110			1.0	0.25	0.1	0.12	0.5	011					
Name		ug/1	1000	Р	ND	ND	ND	ND	23	ND					
Name Cross Section															
Sarium, Total Quf 1000 P 13 17 31 38 93 90	Arsenic, Total			P											
	Barium, Total	ug/l	1000	P	13	17		38	93	90					
Denomina Sept Sept Sept P	Beryllium, Total	ug/l	4	P	ND	ND	ND	ND	ND	ND					
No. No.	Cadmium, Total	ug/l	5	P	ND	ND	ND	ND	ND	ND					
Opper_float Oppe	Chromium, Total	ug/l		P	0.27			ND		1.1					
Page	Hexavalent Chromium (Cr VI)	ug/l		_		0.1									
	Copper, Total														
Magnesim. Total mg/l	Iron, Total														
Manganese, Total ug/l 50 S 12 33 28 49 110 21			15	P											
Mercury			50												
Sicket, Total Sicket, Sick															
Selenium, Total ug/l 50 P ND ND ND ND ND ND ND															
Silver, Total															
Color Colo															
Volatile Organic Compounds															
		ug/1	5000		112	112	1.5	1.0	1.13	112					
	1,1-Dichloroethane	ug/l	5	P	ND	ND	ND	ND	ND	ND					
2.2-Dichloroethane	1,1-Dichloroethylene			_											
Senzene ug/l 1 P ND ND ND ND ND ND ND	1,2-Dichloroethane														
Chlorobenzene	Benzene		1					ND	ND						
Chloromethane (Methyl Chloride)	Carbon Tetrachloride	ug/l													
ND	Chlorobenzene		70	P											
Di-Isopropyl Ether	Chloromethane (Methyl Chloride)														
Sthylbenzene	cis-1,2-Dichloroethylene		6	P											
Sthyl Tert Butyl Ether	Di-Isopropyl Ether														
Second 1	Ethylbenzene		300	P											
Second 13 1200 P ND ND ND ND ND ND ND			150	_											
Methylene Chloride				_											
MTBE															
Styrene															
ND															
Testachloroethylene (PCE)			100	Р											
Tetrachloroethylene (PCE)	, ,		12	N	ND	ND	ND	ND	ND	ND					
Toluene					ND	ND	ND	ND	ND	ND					
Total Trihalomethanes															
Parallel Parallel															
Crickloroethylene (TČE)															
Vinyl chloride (VC) ug/l 0.5 P ND ND </td <td>Trichloroethylene (TCE)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Trichloroethylene (TCE)														
Valence (Total) Ug/l 1750 P ND ND ND ND ND ND ND	Vinyl chloride (VC)														
Others ug/l l ND ND <t< td=""><td>Xylenes (Total)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Xylenes (Total)														
4-Dioxane ug/l 1 N ND	Others				-										
Perchlorate ug/l 6 P ND ND ND ND ND ND 0.68 Surfactants mg/l 0.5 S ND	1,4-Dioxane	ug/l	1	N	ND	ND	ND	ND	ND	ND					
Surfactants mg/l 0.5 S ND ND ND ND ND ND	Perchlorate														
	Surfactants			S		ND		ND		ND					
	Total Organic Carbon	mg/l			14	3.3	0.77	0.48	0.55	0.48					

TABLE 3.1 CENTRAL BASIN WATER QUALITY RESULTS REGIONAL GROUNDWATER MONITORING - WATER YEAR 2021-2022 Page 9 of 38

			/pe	Downey #1											
Constituents	Units	MCL	MCL Type	Zor 4/12/2022	ne 1 7/25/2022	Zoi 4/12/2022	ne 2 7/25/2022	Zor 4/12/2022	ne 3		ne 4	Zo: 4/12/2022	ne 5	Zoi 4/12/2022	ne 6
General Minerals	1	N	2	4/12/2022	112312022	4/12/2022	112312022	4/12/2022	1/23/2022	4/12/2022	112312022	4/12/2022	112312022	4/12/2022	112312022
Alkalinity	mg/l			170	180	160	170	190	200	200	210	230	240	410	450
Anion Sum	meq/l			3.9	4.1	6.5	6.6	8.6	8.8	9.3	9.4	8.9	8.5	18	20
Bicarbonate as HCO3	mg/l			200	210	200	210	230	250	250	250	280	290	500	550
Boron	mg/l	1	N	0.06	0.059	0.066	0.064	0.12	0.11	0.19	0.18	0.095	0.093	0.25	0.25
Bromide	ug/l			ND	0.025	ND	0.085	ND	0.12	ND	0.14	ND	0.14	ND	0.4
Calcium, Total	mg/l			41.2	40.5	79.2	77	99.5	98.6	96.1	94.2	107	100	204	201
Carbon Dioxide	mg/l			151	157	148 ND	153	174 ND	184	188	190 ND	214 ND	215 ND	391	419 ND
Carbonate as CO3 Cation Sum	mg/l meq/l			ND 3.7	ND 3.6	6.2	ND 6	8.2	ND 8	ND 8.9	8.7	8.4	ND 7.8	ND 18	ND 18
Chloride	mg/l	500	S	5.6	5.7	40	40	76	75	83	83	58	51	140	150
Fluoride	mg/l	2	P	0.28	0.3	0.26	0.26	0.3	0.3	0.34	0.37	0.34	0.37	0.28	0.29
Hydroxide as OH, Calculated	mg/l		1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Iodide	ug/l			ND	ND	ND	ND	ND	ND	3.9	3	5.8	4.3	3.6	2.6
Nitrate (as NO3)	mg/l	45	P	ND	0.3	10	10	17	16	8	7.9	ND	ND	ND	ND
Nitrate as Nitrogen	mg/l	10	P	ND	0.068	2.3	2.3	3.8	3.7	1.8	1.8	ND	ND	ND	ND
Nitrite, as Nitrogen	mg/l	1	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Potassium, Total	mg/l			3.2	2.8	4	3.5	4.2	3.8	5	4.5	4.4	3.9	7.7	7.1
Sodium, Total	mg/l			25	24	26	25	38	37	56	54	29	28	100	100
Sulfate	mg/l	500	S	19	20	91	91	110	110	130	140	120	110	290	320
Total Dissolved Solid (TDS)	mg/l	1000	S	200	210	370	390	490	510	530	560	500	490	1100	1200
Nitrate + Nitrite, as Nitrogen	mg/l	10	P	ND	0.068	2.3	2.3	3.8	3.7	1.8	1.8	ND	ND	ND	ND
General Physical Properties	ACTI	1.5	C	ND	MP	ND	ND	ND	ND	ND	ND	ViD	NID	ND	NP
Apparent Color Hardness (Total, as CaCO3)	ACU mg/l	15	S	ND 126	ND 124	ND 249	ND 240	ND 322	ND 316	ND 319	ND 310	ND 351	ND 324	ND 677	ND 662
Lab pH	mg/l Units		\vdash	7.83	8.06	7.91	7.95	7.77	7.83	7.63	7.7	7.71	7.82	7.48	7.57
Langelier Index - 25 degree	None			0.288	0.531	0.573	0.622	0.58	0.654	0.439	0.515	0.632	0.733	0.839	0.952
Odor	TON	3	S	0.288 ND	0.331	ND	1	ND	1	0.439 ND	1	ND	0.733	0.839 ND	0.932
Specific Conductance	umho/cm	1600		340	340	580	570	780	780	860	860	800	740	1800	1600
Turbidity	NTU	5	S	0.1	0.15	0.1	0.15	0.1	0.15	0.1	0.15	1.2	0.9	0.1	0.15
Metals			Ė		0.120		0.00		****		0.20		***		
Aluminum, Total	ug/l	1000	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Antimony, Total	ug/l	6	P	ND	0.23	ND	0.13	ND	0.11	ND	0.16	ND	ND	ND	0.12
Arsenic, Total	ug/l	10	P	2.8	2.9	2.2	2.2	2.7	2.9	1.8	1.9	4.3	4	2.5	2.5
Barium, Total	ug/l	1000	P	97	98	160	160	120	120	81	80	250	230	80	78
Beryllium, Total	ug/l	4	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cadmium, Total	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chromium, Total	ug/l	50	P	3.9	3.9	2	1.9	1.2	1.2	0.39	0.35	ND	ND	ND	ND
Hexavalent Chromium (Cr VI)	ug/l	10	P	3.8	4.3	1.9	2.1	1.3	1.4	0.37	0.38	ND	ND	ND	ND
Copper, Total	ug/l	1300		ND	0.69	0.55	1.1	ND	0.96	ND	1.1	ND	ND	0.56	0.9
Iron, Total	mg/l	0.3	S	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0079	ND	0.016
Lead, Total Magnesium, Total	ug/l mg/l	15	P	ND 5.72	ND 5.47	ND 12.3	ND 11.6	ND 17.8	ND 16.9	ND 19.1	ND 18.1	ND 20.1	ND 18	ND 40.6	ND 38.7
Manganese, Total	ug/l	50	S	ND	0.12	ND	ND	ND	ND	1.3	0.99	120	110	160	160
Mercury	ug/l	2	P	ND	ND	ND	0.065	ND	0.073	ND	0.063	ND	0.044	ND	ND
Nickel, Total	ug/l	100	P	ND	ND	ND	0.18	ND	0.45	ND	0.98	ND	0.37	ND	0.27
Selenium, Total	ug/l	50	P	0.56	0.56	1	0.97	0.77	0.75	ND	0.38	ND	ND	ND	ND
Silver, Total	ug/l	100	S	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Thallium, Total	ug/l	2	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Zinc, Total	ug/l	5000	S	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Volatile Organic Compounds															i
1,1-Dichloroethane	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethylene	ug/l	6	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	ug/l	0.5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzene Carbon Tatrachlorida	ug/l	0.5	P	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Carbon Tetrachloride	ug/l	70	P P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Chlorobenzene Chloromethane (Methyl Chloride)	ug/l ug/l	70	Р	ND ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
cis-1,2-Dichloroethylene	ug/l ug/l	6	P	ND ND	ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	0.3	ND ND	ND ND
Di-Isopropyl Ether	ug/l	,	Ė	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	ug/l	300	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethyl Tert Butyl Ether	ug/l		Ė	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Freon 11	ug/l	150	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Freon 113	ug/l	1200	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene Chloride	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MTBE	ug/l	13	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Styrene	ug/l	100	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tert Amyl Methyl Ether	ug/l		Ļ	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TBA	ug/l	12	N		\ r=-		0.55		0.57						
Tetrachloroethylene (PCE)	ug/l	5	P	ND	ND	ND	0.23	ND	0.26	ND	ND	ND	ND	ND	ND
Toluene	ug/l	150	P	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND
Total Trihalomethanes	ug/l	10	P	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
trans-1,2-Dichloroethylene Trichloroethylene (TCE)	ug/l	10	P	ND ND	ND ND	ND ND	ND 0.19	ND ND	ND ND	ND ND	ND ND	ND ND	ND 0.28	ND ND	ND ND
Vinyl chloride (VC)	ug/l ug/l	0.5	P	ND ND	ND ND	ND ND	0.19 ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.28 ND	ND ND	ND ND
Xylenes (Total)	ug/l	1750	_	ND ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Others	ug/1	1/30	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	MD	ND	ND
1,4-Dioxane	ug/l	1	N	ND	ND	4.2	5.6	6.9	9.5	2.5	2.9	1.4	1.7	1	1.2
Perchlorate	ug/l	6	P	ND	ND	2.4	ND	1.4	ND	0.29	ND	ND	ND	ND	ND
Surfactants	mg/l	0.5	S	ND	0.014	ND	0.029	ND	0.018	ND	0.022	ND	0.015	ND	0.017
Total Organic Carbon	mg/l			ND	ND	ND	0.31	0.37	0.39	0.72	0.57	0.44	0.45	0.98	0.98
-															

TABLE 3.1 CENTRAL BASIN WATER QUALITY RESULTS REGIONAL GROUNDWATER MONITORING - WATER YEAR 2021-2022 Page 10 of 38

			уре			age 10 01 c	on Park #1	Park #1					
Constituents	Units	MCL	MCL Type	Zor 5/19/2022	ne 1 9/16/2022	Zo: 5/19/2022	ne 2 9/16/2022		ne 3 9/16/2022	Zo. 5/19/2022	ne 4 9/16/2022		
General Minerals													
Alkalinity	mg/l			180	180	190	180	250	250	380	370		
Anion Sum	meq/l			6.4	6.5	6.7	6.7	12	12	14	14		
Bicarbonate as HCO3 Boron	mg/l	1	N	220 0.14	220 0.14	230 0.15	220 0.14	310 0.21	300 0.2	460 0.2	450 0.19		
Bromide	mg/l ug/l	1	IN	ND	ND	ND	ND	ND	ND	1.9	2		
Calcium, Total	mg/l			64.4	64.8	67.4	67.7	129	129	155	153		
Carbon Dioxide	mg/l			174	165	173	165	235	224	359	334		
Carbonate as CO3	mg/l			ND	ND	ND	ND	ND	ND	ND	ND		
Cation Sum	meq/l			6.2	6.3	6.5	6.6	12	12	14	14		
Chloride	mg/l	500	S	25	25	31	31	100	100	90	92		
Fluoride	mg/l	2	P	0.44	0.44	0.37	0.37	0.3	0.3	0.29	0.3		
Hydroxide as OH, Calculated	mg/l			ND	ND	ND	ND	ND	ND	ND	ND		
Iodide	ug/l			30	37	ND	ND	30	35	9.9	10		
Nitrate (as NO3)	mg/l	45	P	ND	ND	2.7	2.7	2.7	3.4	27	28		
Nitrate as Nitrogen	mg/l	10	P	ND	ND	0.62	0.61	0.61	0.76	6.1	6.3		
Nitrite, as Nitrogen	mg/l	1	P	ND	ND	ND	ND	ND	ND	ND	ND		
Potassium, Total Sodium, Total	mg/l			3.5 38	3.5 40	3.7 40	3.6 41	4.8 59	4.7 60	5.7 62	5.5 63		
Sulfate	mg/l mg/l	500	S	95	99	97	100	180	190	170	180		
Total Dissolved Solid (TDS)	mg/l mg/l	1000	S	370	380	370	390	730	740	820	830		
Nitrate + Nitrite, as Nitrogen	mg/l	10	P	ND	ND	0.62	0.61	0.61	0.76	6.1	6.3		
General Physical Properties						0.02	0.01	0.01	0.70	· · · ·	0.5		
Apparent Color	ACU	15	S	5	5	ND	ND	3	ND	ND	ND		
Hardness (Total, as CaCO3)	mg/l			222	222	234	233	445	440	548	538		
Lab pH	Units			7.44	7.9	7.68	7.97	7.61	7.92	7.44	7.82		
Langelier Index - 25 degree	None			0.065	0.525	0.348	0.611	0.607	0.915	0.685	1.05		
Odor	TON	3	S	ND	ND	ND	ND	10	4	10	ND		
Specific Conductance	amho/cm		S	600	590	630	620	1100	1100	1300	1300		
Turbidity	NTU	5	S	1.3	1.1	0.1	0.15	0.1	0.1	0.1	0.35		
Metals													
Aluminum, Total	ug/l	1000		ND	ND	ND	ND	ND	ND	ND	ND		
Antimony, Total	ug/l	6	P	ND	ND 0.74	ND	ND	ND 0.40	ND	ND	ND 0.47		
Arsenic, Total	ug/l	10	P	0.81	0.74	0.66 79	0.66 79	0.48 99	0.45	0.57	0.47 90		
Barium, Total Beryllium, Total	ug/l	1000	P P	63 ND	64 ND	ND	ND	ND	98 ND	93 ND	ND		
Cadmium, Total	ug/l ug/l	5	P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND		
Chromium, Total	ug/l	50	P	ND	ND	0.97	0.89	ND	ND	5.4	5.8		
Hexavalent Chromium (Cr VI)	ug/l	10	P	ND	0.031	1.2	0.97	0.16	0.1	5.9	6.4		
Copper, Total	ug/l	1300	P	ND	ND	0.5	23	0.55	1.3	0.68	1.3		
Iron, Total	mg/l	0.3	S	0.28	0.29	ND	ND	ND	ND	ND	ND		
Lead, Total	ug/l	15	P	ND	ND	ND	ND	ND	ND	ND	ND		
Magnesium, Total	mg/l			15	14.8	15.8	15.6	29.5	28.9	39	37.8		
Manganese, Total	ug/l	50	S	47	46	1.3	ND	7.1	7.2	7.4	7.3		
Mercury	ug/l	2	P	ND	ND	ND	ND	ND	ND	ND	ND		
Nickel, Total	ug/l	100	P	ND	ND	ND	3.6	ND	ND	ND	ND		
Selenium, Total	ug/l	50	P	ND	ND	1.9	1.9	ND	ND	3.4	3.3		
Silver, Total	ug/l	100	S	ND	ND	ND	ND	ND	ND	ND	ND		
Thallium, Total Zinc, Total	ug/l ug/l	2 5000	P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND		
Volatile Organic Compounds	ug/1	3000	٥	ND	ND	ND	ND	ND	ND	ND	ND		
1,1-Dichloroethane	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND		
1,1-Dichloroethylene	ug/l	6	P	ND	ND	ND	ND	1.8	1.4	ND	ND		
1,2-Dichloroethane	ug/l	0.5	P	ND	ND	ND	ND	6.6	4.8	12	9.5		
Benzene	ug/l	_1	P	ND	ND	ND	ND	ND	ND	ND	ND		
Carbon Tetrachloride	ug/l	0.5	P	ND	ND	ND	ND	ND	ND	ND	ND		
Chlorobenzene	ug/l	70	P	ND	ND	ND	ND	ND	ND	ND	ND		
Chloromethane (Methyl Chloride)	ug/l			ND	ND	ND	ND	ND	ND	ND	ND		
cis-1,2-Dichloroethylene	ug/l	6	P	ND	ND	ND	ND	1.6	1.2	ND	ND 40		
Di-Isopropyl Ether	ug/l	200	P	ND	ND	ND	ND	ND	ND	53	48		
Ethylbenzene Ethyl Tert Butyl Ether	ug/l	300	P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND		
Freon 11	ug/l ug/l	150	P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND		
Freon 113	ug/l	1200	_	ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND		
Methylene Chloride	ug/l	5	P	ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND		
MTBE	ug/l	13	P	ND	ND	ND	ND	ND	ND	ND	ND		
Styrene	ug/l	100	P	ND	ND	ND	ND	ND	ND	ND	ND		
Tert Amyl Methyl Ether	ug/l			ND	ND	ND	ND	ND	ND	ND	ND		
TBA	ug/l	12	N										
Tetrachloroethylene (PCE)	ug/l	5	P	ND	ND	ND	ND	0.72	0.7	1.5	1.6		
Toluene	ug/l	150	P	ND	ND	ND	ND	ND	ND	ND	ND		
Total Trihalomethanes	ug/l	80	P	ND	ND	ND	ND	ND	ND	0.75	0.76		
trans-1,2-Dichloroethylene	ug/l	10	P	ND	ND	ND	ND	ND	ND	ND	ND		
Trichloroethylene (TCE)	ug/l	5	P	ND	ND	ND	ND	20	16	9.1	9.2		
Vinyl chloride (VC)	ug/l	0.5	P	ND	ND	ND	ND	ND	ND	ND	ND		
Xylenes (Total)	ug/l	1750	P	ND	ND	ND	ND	ND	ND	ND	ND		
Others	75 - 11	1	N.Y.	MD	NID	ND	ND	0.2	0.14	0.25	0.27		
1,4-Dioxane Perchlorate	ug/l ug/l	6	N P	ND ND	ND ND	ND ND	ND ND	0.2	0.14	0.35	0.37 5.3		
Surfactants	mg/l	0.5	S	ND ND	ND ND	ND ND	ND ND	0.87	0.89	ND	ND		
Total Organic Carbon	mg/l	0.5	ں	ND	0.33	ND	0.3	6.4	5.8	0.83	0.66		
Town Organic Carbon	1118/1			110	0.55	1117	0.0	V.T	٥.٥	0.05	0.00		

TABLE 3.1 CENTRAL BASIN WATER QUALITY RESULTS REGIONAL GROUNDWATER MONITORING - WATER YEAR 2021-2022 Page 11 of 38

	, be				Lakewood #1								
Constituents	Units	MCL	MCL Type	Zone 1 3/21/2022	Zone 2 3/21/2022	Zone 3 3/21/2022	Zone 4 3/21/2022	Zone 5 3/21/2022	Zone 6 3/21/2022				
General Minerals			Ž.	3/21/2022	3/21/2022	3/21/2022	3/21/2022	3/21/2022	5/21/2022				
Alkalinity	mg/l			99	150	160	170	180	200				
Anion Sum	meq/l			2.9	3.7	3.8	4.6	4.4	9.7				
Bicarbonate as HCO3	mg/l			110	190	200	210	220	250				
Boron	mg/l	1	N	0.058	0.058	0.07	0.073	0.091	0.085				
Bromide	ug/l			0.11	0.032	0.043	0.14	0.054	0.76				
Calcium, Total	mg/l			10.8	39.1	40.5	50.3	50.3	125				
Carbon Dioxide	mg/l			86.5	136	145	156	164	182				
Carbonate as CO3 Cation Sum	mg/l			5.5	ND 3.7	ND 3.8	ND 4.6	ND 4.4	ND 9.3				
Chloride	meq/l mg/l	500	S	22	7.9	9.8	30	13	160				
Fluoride	mg/l	2	P	0.4	0.22	0.28	0.28	0.44	0.17				
Hydroxide as OH, Calculated	mg/l			ND	ND	ND	ND	ND	ND				
Iodide	ug/l			36	7.8	13	32	15	87				
Nitrate (as NO3)	mg/l	45	P	ND	ND	ND	ND	ND	ND				
Nitrate as Nitrogen	mg/l	10	P	ND	ND	ND	ND	ND	ND				
Nitrite, as Nitrogen	mg/l	1	P	ND	ND	ND	ND	ND	ND				
Potassium, Total	mg/l			0.94	2.1	2.4	4.4	2.7	4.6				
Sodium, Total	mg/l			55	31	31	35	25	45				
Sulfate	mg/l	500	S	16	19	14	14	15	54				
Total Dissolved Solid (TDS)	mg/l	1000	S	170	200	210	250	220	580				
Nitrate + Nitrite, as Nitrogen	mg/l	10	P	ND	ND	ND	ND	ND	ND				
General Physical Properties													
Apparent Color	ACU	15	S	10	ND	3	3	3	ND				
Hardness (Total, as CaCO3)	mg/l			28.5	114	120	150	162	362				
Lab pH	Units		Д	8.42	8.12	8.1	8.08	8	7.9				
Langelier Index - 25 degree	None		П	0.071	0.5	0.52	0.607	0.562	0.813				
Odor	TON	3	S	1	1	1	1	1	1				
Specific Conductance	umho/cn			260	300	320	390	360	840				
Turbidity	NTU	5	S	0.15	0.15	0.25	0.35	0.15	0.5				
Metals													
Aluminum, Total	ug/l	1000		11	ND	ND	ND	ND	ND				
Antimony, Total	ug/l	6	P	ND	ND	ND	ND	ND	ND				
Arsenic, Total	ug/l	10	P	13	15	1.9	8.4	3.3	26				
Barium, Total	ug/l	1000	_	16	27	33	180	110	370				
Beryllium, Total	ug/l	4	P	ND	ND	ND	ND	ND	ND				
Cadmium, Total	ug/l	5	P	ND	ND	ND	ND	ND	ND				
Chromium, Total	ug/l	50	P	0.094	ND	ND	0.099	ND	0.093				
Hexavalent Chromium (Cr VI)	ug/l	10	P	0.095	0.03	0.038	0.029	ND 0.50	ND				
Copper, Total	ug/l	1300		ND	ND 0.012	ND 0.022	ND 0.047	0.58	ND 0.17				
Iron, Total	mg/l	0.3	S	ND	0.013	0.022	0.047	0.11	0.17				
Lead, Total	ug/l	15	P	ND 0.272	ND	ND 4.69	ND	ND 9.94	ND 12.3				
Magnesium, Total Manganese, Total	mg/l	50	S	0.373 4.1	3.89	4.68 26	5.9 73	8.84 58	310				
Mercury	ug/l ug/l	2	P	ND	ND	ND	ND	ND	ND				
Nickel, Total	ug/l	100	P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND				
Selenium, Total	ug/l	50	P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND				
Silver, Total	ug/l	100	S	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND				
Thallium, Total	ug/l	2	P	ND	ND	ND	ND	ND	ND				
Zinc, Total	ug/l	5000	S	ND	ND	ND	ND	ND	ND				
Volatile Organic Compounds	ug/1	5000		ND	IVD	ND	TVD	ND	ND				
1,1-Dichloroethane	ug/l	5	Р	ND	ND	ND	ND	ND	ND				
1,1-Dichloroethylene	ug/l	6	P	ND	ND	ND	ND	ND	ND				
1,2-Dichloroethane	ug/l	0.5	P	ND	ND	ND	ND	ND	ND				
Benzene	ug/l	1	P	ND	ND	ND	ND	ND	ND				
Carbon Tetrachloride	ug/l	0.5	P	ND	ND	ND	ND	ND	ND				
Chlorobenzene	ug/l	70	P	ND	ND	ND	ND	ND	ND				
Chloromethane (Methyl Chloride)	ug/l			ND	ND	ND	ND	ND	ND				
cis-1,2-Dichloroethylene	ug/l	6	P	ND	ND	ND	ND	ND	ND				
Di-Isopropyl Ether	ug/l			ND	ND	ND	ND	ND	ND				
Ethylbenzene	ug/l	300	P	ND	ND	ND	ND	ND	ND				
Ethyl Tert Butyl Ether	ug/l			ND	ND	ND	ND	ND	ND				
Freon 11	ug/l	150	P	ND	ND	ND	ND	ND	ND				
Freon 113	ug/l	1200		ND	ND	ND	ND	ND	ND				
Methylene Chloride	ug/l	5	P	ND	ND	ND	ND	ND	ND				
MTBE	ug/l	13	P	ND	ND	ND	ND	ND	ND				
Styrene	ug/l	100	P	ND	ND	ND	ND	ND	ND				
Tert Amyl Methyl Ether	ug/l			ND	ND	ND	ND	ND	ND				
TBA	ug/l	12	N										
Tetrachloroethylene (PCE)	ug/l	5	P	ND	ND	ND	ND	ND	ND				
Toluene	ug/l	150	P	ND	ND	ND	ND	ND	ND				
Total Trihalomethanes	ug/l	80	P	ND	ND	ND	ND	ND	ND				
trans-1,2-Dichloroethylene	ug/l	10	P	ND	ND	ND	ND	ND	ND				
Trichloroethylene (TCE)	ug/l	5	P	ND	ND	ND	ND	ND	ND				
Vinyl chloride (VC)	ug/l	0.5	P	ND	ND	ND	ND	ND	ND				
Xylenes (Total)	ug/l	1750	P	ND	ND	ND	ND	ND	ND				
Others			Ш										
1,4-Dioxane	ug/l	1	N	ND	ND	ND	ND	ND	0.075				
Perchlorate	ug/l	6	P	ND	ND	ND	ND	ND	ND				
Surfactants	mg/l	0.5	S	0.016	0.018	ND	0.019	ND	0.062				
Total Organic Carbon	mg/l	0.0		0.66	0.21	0.29	0.5	0.25	0.84				

TABLE 3.1 CENTRAL BASIN WATER QUALITY RESULTS REGIONAL GROUNDWATER MONITORING - WATER YEAR 2021-2022 Page 12 of 38

	Lakewood #2																		
Constituents	Units	MCL	MCL Type	Zoi			ne 2		ne 3	Zor	ne 4	Zoı	ne 5		ne 6		ne 7		ne 8
General Minerals	Ū	N	Ž	5/24/2022	9/29/2022	5/24/2022	9/29/2022	5/24/2022	9/29/2022	5/24/2022	9/29/2022	5/24/2022	9/29/2022	5/24/2022	9/29/2022	5/24/2022	9/29/2022	5/24/2022	9/29/2022
Alkalinity	mg/l			110	110	140	140	140	130	190	180	170	170	190	190	180	180	210	210
Anion Sum	meq/l			3.6	3.6	3.2	3.2	3.1	3	5.1	5	4	4	4.2	4.1	4.2	4.1	4.6	4.5
Bicarbonate as HCO3	mg/l			120	120	170	170	170	160	230	220	210	210	230	230	220	220	260	250
Boron	mg/l	1	N	0.06	0.06	0.052	0.054	0.048	0.048	0.071	0.071	0.058	0.059	0.065	0.066	0.065	0.065	0.079	0.079
Bromide	ug/l			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Calcium, Total	mg/l			12.1	12.3	26	27	25.1	26.2	62.2	64.9	43.6	46	48.4	50.3	52.9	54.1	57.4	58.7
Carbon Dioxide	mg/l			93.3	91.1	122	120	121	117	167	161	156	152	171	165	164	157	194	185
Carbonate as CO3 Cation Sum	mg/l			6.8 3.2	8.5 3.4	ND 3	ND 3.2	ND 2.9	ND 3.1	ND 4.8	ND 5.1	ND 3.9	ND 4.1	ND 4	ND 4.1	ND 4	ND 4.1	ND 4.5	ND 4.6
Chloride	meq/l mg/l	500	S	14	14	6.2	6.2	5.9	5.9	14	14	6.3	6.3	5.8	5.8	6.1	6.1	7.5	7.5
Fluoride	mg/l	2	P	0.38	0.38	0.29	0.29	0.26	0.26	0.38	0.38	0.24	0.25	0.3	0.3	0.2	0.1	0.32	0.32
Hydroxide as OH, Calculated	mg/l			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Iodide	ug/l			13	16	7.3	8.5	8.2	9.3	ND	ND	4.1	5	4	4.9	5.7	7.1	17	19
Nitrate (as NO3)	mg/l	45	P	ND	ND	ND	ND	ND	ND	1.1	1.1	ND	ND	ND	ND	ND	ND	ND	ND
Nitrate as Nitrogen	mg/l	10	P	ND	ND	ND	ND	ND	ND	0.24	0.26	ND	ND	ND	ND	ND	ND	ND	ND
Nitrite, as Nitrogen	mg/l	1	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Potassium, Total	mg/l			1.1	1	2.3	2.2	1.8	1.7	3.2	3.3	2.6	2.6	2.9	2.9	2.5	2.4	2.9	2.8
Sodium, Total	mg/l			60	62	32	34	33	35	21	22	29	29	22	23	23	23	23	24
Sulfate	mg/l	500	S	49	51	14	15	7	7	44	45	18	19	8.8	8.7	16	16	6.7	6.7
Total Dissolved Solid (TDS)	mg/l	1000		220 ND	220 ND	190	190	180	180	290	280	240 ND	220 ND	230 ND	230 ND	240 ND	220 ND	260 ND	240 ND
Nitrate + Nitrite, as Nitrogen General Physical Properties	mg/l	10	P	ND	ND	ND	ND	ND	ND	0.24	0.26	ND	ND	ND	ND	ND	ND	ND	ND
Apparent Color	ACU	15	S	5	5	3	ND	4	5	ND	ND	ND	ND	ND	4	ND	ND	ND	ND
Hardness (Total, as CaCO3)	mg/l	13	3	30.2	30.6	79.3	82.1	71.6	74.7	193	201	130	137	149	154	147	150	172	176
Lab pH	Units			8.54	8.62	8.14	8.33	8.2	8.41	7.88	8.17	7.97	8.22	7.9	8.24	7.92	8.2	7.84	8.12
Langelier Index - 25 degree	None			0.266	0.353	0.317	0.522	0.365	0.56	0.535	0.822	0.438	0.717	0.465	0.821	0.497	0.793	0.513	0.809
Odor	TON	3	S	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Specific Conductance	umho/cm	1600		360	350	310	300	290	570	470	460	380	380	390	380	390	380	430	420
Turbidity	NTU	5	S	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.3	ND	ND	ND	ND	ND	ND
Metals																			
Aluminum, Total	ug/l	1000	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Antimony, Total	ug/l	6	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Arsenic, Total	ug/l	10	P	13	14	ND	ND	1.6	1.7	3.1	3.3	20	20	7.9	6.9	40	40	40	40
Barium, Total	ug/l	1000	P	15	15	7.4	7.6	9.3	9.7	100	110	120	120	67	72	140	140	120	120
Beryllium, Total	ug/l	4	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cadmium, Total	ug/l	50	P	ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND 0.57	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND
Chromium, Total Hexavalent Chromium (Cr VI)	ug/l ug/l	10	P	ND 0.11	0.12	0.084	0.025	ND 0.091	0.024	0.6	0.57	0.055	0.073	ND 0.049	ND	0.068	ND	0.049	ND ND
Copper, Total	ug/l	1300	_	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Iron, Total	mg/l	0.3	S	ND	ND	ND	ND	ND	ND	ND	ND	0.039	0.061	0.057	0.06	0.077	0.078	0.073	0.075
Lead, Total	ug/l	15	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Magnesium, Total	mg/l			ND	ND	3.47	3.58	2.17	2.26	9.25	9.57	5.12	5.33	6.82	6.96	3.68	3.71	6.98	7.05
Manganese, Total	ug/l	50	S	4.6	4.8	13	14	15	16	ND	ND	99	100	160	170	110	110	190	200
Mercury	ug/l	2	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Nickel, Total	ug/l	100	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Selenium, Total	ug/l	50	P	ND	ND	ND	ND	ND	ND	0.64	0.68	ND	ND	ND	ND	ND	ND	ND	ND
Silver, Total	ug/l	100	S	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Thallium, Total	ug/l	2 5000	P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Zinc, Total Volatile Organic Compounds	ug/l	3000	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1.1-Dichloroethylene	ug/l	6	P	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND
1,2-Dichloroethane	ug/l	0.5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzene	ug/l	1	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Tetrachloride	ug/l	0.5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	ug/l	70	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloromethane (Methyl Chloride)	ug/l			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethylene	ug/l	6	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Di-Isopropyl Ether	ug/l	200		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	ug/l	300	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethyl Tert Butyl Ether	ug/l	150	D	ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND
Freon 11 Freon 113	ug/l	150 1200	P	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND
Methylene Chloride	ug/l ug/l	5	P	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND	ND ND	ND	ND ND	ND ND	ND ND
MTBE	ug/l	13	P	ND	ND	ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND	ND	ND	ND ND	ND ND	ND ND
Styrene	ug/l	100	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tert Amyl Methyl Ether	ug/l		Ė	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TBA	ug/l	12	N								_		_						
Tetrachloroethylene (PCE)	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	ug/l	150	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total Trihalomethanes	ug/l	80	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethylene	ug/l	10	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethylene (TCE)	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl chloride (VC)	ug/l	0.5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Xylenes (Total)	ug/l	1750	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Others																			
1,4-Dioxane	ug/l	1	N	ND	ND	ND	ND	ND	ND	0.2	0.22	ND	ND	ND	ND	ND	ND	ND	ND
Perchlorate	ug/l	6	P	ND	ND	ND	ND	ND	ND	0.44	0.49	ND	ND	ND	ND	ND	ND	ND	ND
Surfactants Total Organia Carbon	mg/l	0.5	S	ND 0.84	ND 0.49	ND 0.54	ND 0.46	ND 0.74	ND 0.64	ND 0.36	ND	ND 0.30	ND 0.21	ND 0.44	ND 0.46	ND 0.08	ND 0.48	ND 0.40	ND 0.36
Total Organic Carbon	mg/l	l		0.84	0.49	0.54	0.46	0.74	0.64	0.36	ND	0.39	0.31	0.44	0.46	0.98	0.48	0.49	0.36

TABLE 3.1 CENTRAL BASIN WATER QUALITY RESULTS REGIONAL GROUNDWATER MONITORING - WATER YEAR 2021-2022 Page 13 of 38

			يق La Mirada #1												
Constituents	Units	MCL	MCL Type	Zor 5/4/2022	ne 1 8/23/2022	Zor 5/4/2022	ne 2 8/23/2022	Zor 5/4/2022	ne 3 8/23/2022	Zo: 5/4/2022	ne 4 8/23/2022	Zor 5/4/2022	ne 5 8/23/2022		
General Minerals	1	-	2	3/4/2022	0/23/2022	3/4/2022	0/23/2022	3/4/2022	8/23/2022	3/4/2022	8/23/2022	3/4/2022	8/23/2022		
Alkalinity	mg/l			150	150	140	140	180	180	200	200	180	180		
Anion Sum Bicarbonate as HCO3	meq/l mg/l			6.1 190	6 180	4.4 170	4.3 160	5.7 220	5.6 220	8.7 240	8.5 240	9.8 220	14 230		
Boron	mg/l	1	N	0.14	0.15	0.1	0.1	0.15	0.15	0.14	0.14	0.15	0.16		
Bromide	ug/l			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
Calcium, Total	mg/l			15.4	15.5	9.95	9.69	20.7	19.2	61.6	58.1	61	103		
Carbon Dioxide	mg/l			137	132	125	123	165	163	183	180	164	168		
Carbonate as CO3 Cation Sum	mg/l meg/l			ND 5.7	ND 5.8	ND 4.1	7 4.1	ND 5.4	ND 5.3	ND 8.3	ND 8.1	ND 9	ND 13		
Chloride	mg/l	500	S	29	29	16	16	21	20	84	78	130	250		
Fluoride	mg/l	2	P	0.75	0.73	0.49	0.51	0.74	0.68	0.44	0.44	0.44	0.3		
Hydroxide as OH, Calculated	mg/l			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
Iodide	ug/l	4.5	Ъ	26 ND	26	8.3	7.9 ND	23	21	36	34	14 29	3.2		
Nitrate (as NO3) Nitrate as Nitrogen	mg/l mg/l	45 10	P P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	1.9 0.43	1.5 0.34	6.5	68 15		
Nitrite, as Nitrogen	mg/l	1	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
Potassium, Total	mg/l			2.4	2.6	1.8	2	2.7	2.8	3.5	3.6	3.5	4.7		
Sodium, Total	mg/l			110	110	80	79	87	88	78	78	95	110		
Sulfate	mg/l	500	S	110	100	52	51	68	65	110	110	110	110		
Total Dissolved Solid (TDS) Nitrate + Nitrite, as Nitrogen	mg/l mg/l	1000	S P	340 ND	360 ND	240 ND	240 ND	320 ND	320 ND	480 0.43	470 0.34	540 6.5	840 15		
General Physical Properties	mg/I	10	1	ND	ND	ND	ND	ND	ND	0.43	0.54	0.5	15		
Apparent Color	ACU	15	S	ND	ND	ND	ND	ND	4	ND	ND	ND	ND		
Hardness (Total, as CaCO3)	mg/l			52.5	53.2	30.4	29.8	77.2	71.7	242	231	238	409		
Lab pH	Units			8.04	8.3	8.19	8.43	7.93	8.19	7.7	7.94	7.67	7.8		
Langelier Index - 25 degree Odor	None TON	3	S	-0.028 ND	0.228 ND	-0.069 ND	0.159 ND	0.075 ND	0.302 ND	0.326 ND	0.542 ND	0.233 ND	0.54 ND		
Specific Conductance	ımho/cn	1600	S	600	630	440	450	550	560	840	860	960	1500		
Turbidity	NTU	5	S	ND	0.1	ND	ND	ND	ND	ND	ND	ND	ND		
Metals															
Aluminum, Total	ug/l	1000	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
Antimony, Total	ug/l	6	P	ND	ND	ND 7.6	ND	ND	ND	ND 2.2	ND 2.7	ND	ND		
Arsenic, Total Barium, Total	ug/l ug/l	1000	P P	5.3 52	5.8 56	7.6 26	7.9 28	5.2 43	5.5	3.3 61	3.7 60	1.7	1.4 110		
Beryllium, Total	ug/l	4	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
Cadmium, Total	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
Chromium, Total	ug/l	50	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.94		
Hexavalent Chromium (Cr VI)	ug/l	10	P	0.12	0.21	0.068	0.13	0.076	0.19	0.078	0.16	0.2	0.84		
Copper, Total Iron, Total	ug/l mg/l	0.3	P	ND ND	ND ND	ND ND	ND ND	0.73 ND	0.62 ND	0.51 ND	ND ND	ND ND	0.57 ND		
Lead, Total	ug/l	15	P	ND	ND	ND	ND ND	ND	ND ND	ND	ND	ND	ND ND		
Magnesium, Total	mg/l			3.4	3.51	1.34	1.35	6.21	5.8	21.3	21	20.8	37.1		
Manganese, Total	ug/l	50	S	11	11	2.9	2.8	17	16	18	25	20	36		
Mercury	ug/l	2	P	ND	ND	ND	ND	ND	0.057	ND	ND	ND	ND		
Nickel, Total	ug/l	100 50	P P	ND ND	ND ND	ND ND	ND ND	ND 0.94	ND 0.46	ND 7.2	ND 6.9	ND 4.2	ND 8.9		
Selenium, Total Silver, Total	ug/l ug/l	100	S	ND ND	ND ND	ND	ND ND	0.94 ND	0.46 ND	7.3 ND	ND	ND	ND		
Thallium, Total	ug/l	2	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
Zinc, Total	ug/l	5000	S	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
Volatile Organic Compounds															
1,1-Dichloroethane	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
1,1-Dichloroethylene 1,2-Dichloroethane	ug/l ug/l	0.5	P P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND		
Benzene	ug/l	1	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
Carbon Tetrachloride	ug/l	0.5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
Chlorobenzene	ug/l	70	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
Chloromethane (Methyl Chloride)	ug/l		_	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
cis-1,2-Dichloroethylene Di-Isopropyl Ether	ug/l ug/l	6	P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND		
Ethylbenzene	ug/l ug/l	300	P	ND	ND	ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND		
Ethyl Tert Butyl Ether	ug/l		Ħ	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
Freon 11	ug/l	150	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
Freon 113	ug/l	1200	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
Methylene Chloride	ug/l	5	P	ND	ND	ND	ND	ND	ND ND	ND	ND ND	ND ND	ND ND		
MTBE Styrene	ug/l ug/l	13	P P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND		
Tert Amyl Methyl Ether	ug/l	100		ND	ND	ND	ND	ND	ND ND	ND	ND ND	ND ND	ND ND		
TBA	ug/l	12	N												
Tetrachloroethylene (PCE)	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
Toluene	ug/l	150	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
Total Trihalomethanes trans-1,2-Dichloroethylene	ug/l ug/l	80 10	P P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND		
Trichloroethylene (TCE)	ug/l ug/l	5	P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND		
Vinyl chloride (VC)	ug/l	0.5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
Xylenes (Total)	ug/l	1750	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
Others															
1,4-Dioxane	ug/l	1	N	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 4.0		
Perchlorate Surfactants	ug/l mg/l	0.5	P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	1.9 ND	4.9 ND		
Total Organic Carbon	mg/l	0.5	ی	0.35	0.42	ND	0.3	0.57	0.53	0.36	0.37	0.37	0.55		
Organio Curbon	.116/1	<u> </u>		0.55	0.12	110	0.5	0.57	0.55	0.50	0.57	0.57	0.55		

TABLE 3.1 CENTRAL BASIN WATER QUALITY RESULTS REGIONAL GROUNDWATER MONITORING - WATER YEAR 2021-2022 Page 14 of 38

			ype	Long Beach #1												
Constituents	Units	MCL	MCL Type	Zor 3/8/2022	ne 1 9/19/2022	Zor 3/8/2022	ne 2 9/19/2022		ne 3		ne 4 9/19/2022	Zo: 3/8/2022	ne 5	Zor 3/8/2022	ne 6 9/19/2022	
General Minerals		Ĭ	_	3/6/2022)/1)/2022	3/6/2022	7/17/2022	3/6/2022	7/17/2022	3/6/2022	7/17/2022	3/6/2022	7/17/2022	3/6/2022	J11 J1 Z 0 Z Z	
Alkalinity	mg/l			170	170	160	150	120	120	130	130	130	130	260	250	
Anion Sum	meq/l			3.9	3.9	3.6	3.6	3.1	3.1	3.8	3.8	12	12	18	18	
Bicarbonate as HCO3	mg/l	1	NI	180	170	170	160	140	120 0.088	160	150	160	160 0.16	310	310	
Boron Bromide	mg/l ug/l	1	N	0.17 ND	0.18 ND	0.16 ND	0.17 ND	0.086 ND	0.088 ND	0.058 ND	0.061 ND	0.15 ND	ND	0.12 ND	0.13 ND	
Calcium, Total	mg/l			5.05	3.23	2.44	2.52	5.14	5.18	21.5	22	47.6	47.7	182	186	
Carbon Dioxide	mg/l			144	140	135	129	105	101	117	113	120	118	236	226	
Carbonate as CO3	mg/l			19	27	20	26	10	19	ND	ND	ND	ND	ND	ND	
Cation Sum	meq/l			3.6	3.6	3.3	3.3	2.9	2.8	3.5	3.5	11	11	17	17	
Chloride	mg/l	500	S	18	19	16	16	13	13	13	13	150	150	220	220	
Fluoride	mg/l	2	P	0.51	0.53	0.53	0.54	0.6	0.61	0.36	0.36	0.27	0.28	0.22	0.21	
Hydroxide as OH, Calculated	mg/l			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Iodide	ug/l	4.5	n	26	28	17	18 ND	6.1	6.2	4.5	4.6	8.3	9.6	40	44	
Nitrate (as NO3)	mg/l	45 10	P P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	
Nitrate as Nitrogen Nitrite, as Nitrogen	mg/l mg/l	10	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Potassium, Total	mg/l	-	1	0.71	0.76	ND	0.56	0.52	0.63	1.2	1.3	3	3.2	4.4	4.8	
Sodium, Total	mg/l			77	78	73	72	60	58	52	51	180	170	110	110	
Sulfate	mg/l	500	S	1.3	ND	ND	ND	15	16	38	39	230	230	310	310	
Total Dissolved Solid (TDS)	mg/l	1000	S	240	240	230	220	200	190	230	220	720	710	1100	1100	
Nitrate + Nitrite, as Nitrogen	mg/l	10	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
General Physical Properties																
Apparent Color	ACU	15	S	100	100	80	75	35	30	5	4	4	3	5	3	
Hardness (Total, as CaCO3)	mg/l			12.6	8.07	6.09	6.3	12.8	12.9	61	62.7	146	147	584	598	
Lab pH Langelier Index - 25 degree	Units None			8.75 0.277	8.95 0.28	8.69 -0.121	9.03 0.203	8.56 -0.04	8.89 0.292	8.14 0.187	8.38 0.44	8.01 0.291	8.16 0.443	7.72 0.832	7.85 0.954	
Odor	TON	3	S	0.277 ND	2	-0.121 ND	0.203 ND	-0.04 ND	0.292 4	0.187 ND	0.44 ND	0.291 ND	2	0.832 ND	2	
Specific Conductance	umho/cm			370	370	340	340	310	300	370	360	1200	1200	1800	1800	
Turbidity	NTU	5	S	ND	0.15	ND	0.3	ND	0.25	0.2	0.2	0.35	0.35	0.4	0.55	
Metals																
Aluminum, Total	ug/l	1000	P	28	31	26	26	ND	ND	ND	ND	ND	ND	ND	ND	
Antimony, Total	ug/l	6	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Arsenic, Total	ug/l	10	P	ND	ND	ND	ND	ND	ND	0.44	ND	0.79	0.7	7.3	7	
Barium, Total	ug/l	1000	_	3.5	2.9	2	2	1.5	1.4	8.1	8.7	42	41	180	180	
Beryllium, Total	ug/l	4	P	ND	ND	ND ND	ND ND	ND ND	ND	ND	ND	ND ND	ND	ND	ND ND	
Cadmium, Total Chromium, Total	ug/l ug/l	50	P P	ND 0.6	ND 0.67	0.36	0.34	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	
Hexavalent Chromium (Cr VI)	ug/l	10	P	0.047	0.07	0.12	0.27	0.2	0.22	ND	0.19	ND	0.043	ND	ND	
Copper, Total	ug/l	1300		0.57	0.78	ND	0.51	ND	ND	ND	ND	ND	ND	ND	ND	
Iron, Total	mg/l	0.3	S	ND	0.03	ND	ND	ND	0.032	ND	ND	ND	0.03	0.18	0.19	
Lead, Total	ug/l	15	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Magnesium, Total	mg/l			ND	ND	ND	ND	ND	ND	1.8	1.89	6.62	6.69	31.6	32.5	
Manganese, Total	ug/l	50	S	5.6	4.1	1.3	1.2	2.8	2.5	23	18	51	52	410	420	
Mercury	ug/l	2	P	ND	ND	ND	ND	ND	ND	ND	0.088	ND	ND	ND	ND	
Nickel, Total	ug/l	100	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Selenium, Total Silver, Total	ug/l ug/l	50 100	P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	
Thallium, Total	ug/l	2	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Zinc, Total	ug/l	5000		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Volatile Organic Compounds	8															
1,1-Dichloroethane	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
1,1-Dichloroethylene	ug/l	6	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
1,2-Dichloroethane	ug/l	0.5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Benzene	ug/l	1	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Carbon Tetrachloride	ug/l	0.5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Chlorobenzene	ug/l	70	P	ND	ND ND	ND	ND 0.72	ND	ND 0.98	ND	ND 1	ND ND	ND 0.95	ND ND	ND	
Chloromethane (Methyl Chloride) cis-1,2-Dichloroethylene	ug/l ug/l	6	P	ND ND	ND ND	ND ND	0.72 ND	ND ND	0.98 ND	ND ND	ND	ND ND	0.95 ND	ND ND	ND ND	
Di-Isopropyl Ether	ug/1 ug/1	U	r	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	
Ethylbenzene	ug/l	300	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Ethyl Tert Butyl Ether	ug/l			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Freon 11	ug/l	150	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Freon 113	ug/l	1200		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Methylene Chloride	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
MTBE	ug/l	13	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Styrene	ug/l	100	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Tert Amyl Methyl Ether	ug/l	10	N.T	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
TBA Tetrachloroethylene (PCE)	ug/l ug/l	12	N P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Toluene (PCE)	ug/l ug/l	150	P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	
Total Trihalomethanes	ug/1	80	P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	
trans-1,2-Dichloroethylene	ug/l	10	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Trichloroethylene (TCE)	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Vinyl chloride (VC)	ug/l	0.5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Xylenes (Total)	ug/l	1750		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Others																
1,4-Dioxane	ug/l	1	N	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.08	0.1	
Perchlorate	ug/l	6	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Surfactants	mg/l	0.5	S	ND	ND	ND	ND	ND	ND	ND 0.42	ND 0.52	ND	ND	ND	ND	
Total Organic Carbon	mg/l			3.6	3.7	2.3	2.6	1.4	1.5	0.42	0.52	1.2	1.3	1.2	1.3	

TABLE 3.1 CENTRAL BASIN WATER QUALITY RESULTS REGIONAL GROUNDWATER MONITORING - WATER YEAR 2021-2022 Page 15 of 38

			уре		- 1 uge 10		Beach #2		
Constituents	Units	MCL	MCL Type	Zone 1 4/19/2022	Zone 2 4/19/2022	Zone 3 4/19/2022	Zone 4 4/19/2022	Zone 5 4/19/2022	Zone 6 4/19/2022
General Minerals	1	-	~	4/19/2022	4/19/2022	4/19/2022	4/19/2022	4/13/2022	4/15/2022
Alkalinity	mg/l			310	190	160	160	290	310
Anion Sum	meq/l			7	4.5	3.9	7.1	15	19
Bicarbonate as HCO3	mg/l			380	240	190	190	360	380
Boron	mg/l	1	N	0.52	0.2	0.15	0.1	0.29	0.23
Bromide	ug/l			ND	ND	ND	ND	0.74	0.76
Calcium, Total	mg/l			6.96	15.3	13.4	64.8	166	224
Carbon Dioxide	mg/l			277	171	140	140	268	296
Carbonate as CO3	mg/l			ND	ND	ND	ND 7	ND 15	ND 19
Cation Sum Chloride	meq/l	500	6	6.7	4.4	3.8	70	15 130	160
Fluoride	mg/l	500	S	0.53	0.38	0.44	0.23	0.15	0.21
Hydroxide as OH, Calculated	mg/l mg/l		1	ND	ND	ND	ND	ND	ND
Iodide	ug/l			62	36	35	39	28	34
Nitrate (as NO3)	mg/l	45	P	ND	ND	ND	ND	ND	ND
Nitrate as Nitrogen	mg/l	10	P	ND	ND	ND	ND	ND	ND
Nitrite, as Nitrogen	mg/l	1	P	ND	ND	ND	ND	ND	ND
Potassium, Total	mg/l			3	2	1.5	3.9	5.8	6.4
Sodium, Total	mg/l			140	79	69	71	110	99
Sulfate	mg/l	500	S	ND	ND	ND	93	290	380
Total Dissolved Solid (TDS)	mg/l	1000	S	390	250	200	400	930	1100
Nitrate + Nitrite, as Nitrogen	mg/l	10	P	ND	ND	ND	ND	ND	ND
General Physical Properties									
Apparent Color	ACU	15	S	220	40	25	3	5	5
Hardness (Total, as CaCO3)	mg/l			23.5	45.1	38.4	190	524	706
Lab pH	Units			8.3	8.19	8.31	8.07	7.69	7.48
Langelier Index - 25 degree	None		Ш	0.188	0.248	0.252	0.639	0.831	0.759
Odor	TON	3	S	4	ND	ND	ND	4	4
Specific Conductance	umho/cn		S	650	420	360	680	1600	630
Turbidity	NTU	5	S	0.15	ND	ND	ND	1.4	1.3
Metals									
Aluminum, Total	ug/l	1000		ND	ND	ND	ND	ND	ND
Antimony, Total	ug/l	6	P	ND	ND	ND	ND	ND	ND
Arsenic, Total	ug/l	10	P	ND	ND	ND	0.72	4.1	5.3
Barium, Total	ug/l	1000	_	6.1	9.9	5.6	42	59	78 NB
Beryllium, Total	ug/l	4	P	ND	ND	ND	ND	ND	ND
Cadmium, Total	ug/l	50	P	ND	ND	ND ND	ND ND	ND ND	ND ND
Chromium, Total	ug/l	10	P	0.6	ND 0.048		0.021	ND ND	ND ND
Hexavalent Chromium (Cr VI) Copper, Total	ug/l ug/l	1300	_	0.17 1.4	0.048 ND	0.15 ND	0.021 ND	ND ND	ND ND
Iron, Total	mg/l	0.3	S	0.08	ND ND	ND ND	0.034	0.23	0.25
Lead, Total	ug/l	15	P	ND	ND	ND ND	ND	ND	ND
Magnesium, Total	mg/l	13	1	1.48	1.68	1.21	6.98	26.4	35.4
Manganese, Total	ug/l	50	S	13	17	7.9	30	180	410
Mercury	ug/l	2	P	ND	ND	ND	ND	ND	ND
Nickel, Total	ug/l	100	P	ND	ND	ND	ND	ND	ND
Selenium, Total	ug/l	50	P	ND	ND	ND	ND	ND	ND
Silver, Total	ug/l	100	S	ND	ND	ND	ND	ND	ND
Thallium, Total	ug/l	2	P	ND	ND	ND	ND	ND	ND
Zinc, Total	ug/l	5000	S	ND	ND	ND	ND	ND	ND
Volatile Organic Compounds									
1,1-Dichloroethane	ug/l	5	P	ND	ND	ND	ND	1	5.4
1,1-Dichloroethylene	ug/l	6	P	ND	ND	ND	ND	ND	1.9
1,2-Dichloroethane	ug/l	0.5	P	ND	ND	ND	ND	ND	ND
Benzene	ug/l	1	P	ND	ND	ND	ND	ND	ND
Carbon Tetrachloride	ug/l	0.5	P	ND	ND	ND	ND	ND	ND
Chlorobenzene	ug/l	70	P	ND	ND	ND	ND	ND	ND
Chloromethane (Methyl Chloride)	ug/l		_	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethylene	ug/l	6	P	ND	ND	ND	ND	5.1	12 ND
Di-Isopropyl Ether	ug/l	200	P	ND	ND	ND ND	ND ND	ND	ND ND
Ethylbenzene	ug/l	300	P	ND	ND	ND	ND	ND	ND
Ethyl Tert Butyl Ether	ug/l	150	D	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Freen 112	ug/l	150	P	ND ND	ND ND	ND ND	ND		
Freon 113 Methylene Chloride	ug/l	1200	P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Methylene Chloride MTBE	ug/l	5	P	ND ND	ND ND	ND ND	ND ND	ND 11	ND 11
Styrene	ug/l ug/l	100	P	ND ND	ND ND	ND ND	ND ND	ND	ND
Tert Amyl Methyl Ether	ug/1	100	r	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
TBA	ug/l	12	N	ND	ND	ND	ND	ND	ND
Tetrachloroethylene (PCE)	ug/l	5	P	ND	ND	ND	ND	ND	ND
Toluene	ug/l	150	P	ND	ND	ND ND	ND	ND	ND ND
Total Trihalomethanes	ug/l	80	P	ND ND	ND	ND ND	ND ND	ND ND	ND ND
trans-1,2-Dichloroethylene	ug/l	10	P	ND	ND	ND	ND	ND	1.3
Trichloroethylene (TCE)	ug/l	5	P	ND	ND	ND	ND	ND	0.58
Vinyl chloride (VC)	ug/l	0.5	P	ND	ND	ND	ND	ND	ND
Xylenes (Total)	ug/l	1750		ND	ND	ND	ND	ND	ND
Others	g/1	1,50		.,,,		.10	.10		.,D
1,4-Dioxane	ug/l	1	N	ND	ND	ND	ND	3.5	11
Perchlorate	ug/l	6	P	ND	ND	ND	ND	ND	ND
Surfactants	mg/l	0.5	S	ND	ND	ND	ND	0.067	0.054
Total Organic Carbon	mg/l			8	4	3.1	1.7	1.4	1.3
			1	9		J.1	1.7	4.1	1.5

TABLE 3.1 CENTRAL BASIN WATER QUALITY RESULTS REGIONAL GROUNDWATER MONITORING - WATER YEAR 2021-2022 Page 16 of 38

Independence Inde				be				age 10		I ong R	00ch #6					
Content Membra	Constituents	nits	CL	CLTy					Zo	ne 3	Zo	ne 4				
According	Canaral Minarals	Ū	M	Ň	3/7/2022	8/15/2022	3/7/2022	8/15/2022	3/7/2022	8/15/2022	3/7/2022	8/15/2022	3/7/2022	8/15/2022	3/7/2022	8/15/2022
Seedence and PICCS		mg/l			560	550	340	380	170	170	130	130	120	120	130	130
Seen																
Secondary	Bicarbonate as HCO3	mg/l														
Cacheno, Total mugl 1, 82,12 79,11 59, 20 65.54 55.58 54.11 10 9.76 12.11 12 51.77 51. Controlled Colored Broaded mg/l 14 499 482			1	N												
Carbon Decide																
Carbonose (CAS)	Ź															
Calest Som																
Calendar																
Filements (Histondes of Histondes) (Histondes) (Histon			500	S										_		
Independence Inde	Fluoride			_					0.56	0.57			0.47	0.46	0.2	0.2
Nigeric (NO3)	Hydroxide as OH, Calculated	mg/l			ND	ND	140	ND								
Nimeta a Shringera mg2 10 P ND ND ND ND ND ND ND		ug/l			69			50				8.5	23	18		10
Nimer, as Nimeger Miner, as Nim																
Newsona Total Properties			10													
Soltion Float Soltion Float			1	P								ND				
Solfeet Chief Disabelved Solid (TISS) ngg 100 8 ND ND ND ND ND ND ND												1				
Total Disorderd Solid (TDS) mag 1		_	500	C												
Nimate = Nimite, as Nimogen mgf 10 P ND ND ND ND ND ND ND																
General Physical Properties																
Agreement Color												- 2				
Hindroses (Toral, as Car(CO3)	Apparent Color	ACU	15	S	350	250	150	200	150	120	40	40	25	20	3	ND
Langelier Index - 25 degree	Hardness (Total, as CaCO3)															
Older (Continum) (Color) (100) (S. 9) (10) (100) (S. 90) (720) (130) (300) (20) (20) (20) (20) (30) (40) (40) (40) (40) (40) (40) (40) (4																
Specific Conductance																
Tubbidity			,													
Metals																
Alumnum, Total		NTU	5	S	0.9	0.3	0.2	0.2	0.2	0.15	0.2	0.2	0.1	0.2	0.1	0.1
Administry Total		n ~/1	1000	D	ND	ND	NID	ND	ND	ND	NID	ND	ND	ND	ND	ND
Arenes, Total ugl 100 P 2.6 2.4 0.62 0.56 ND ND ND ND ND ND 2.1 2 Beryllium, Total ugl 1000 P 0.5 6.4 6 6.7 4.1 4 6.6 6.8 2.2 2.3 3.2 2.2 2.3 Beryllium, Total ugl 5 P ND ND ND ND ND ND ND																
Barium, Total ug/l 1000 P 6.5 6.4 6 6.7 4.1 4 6.6 6.8 2.2 2.3 2.2 2.2 Beryliam, Total ug/l 5 P ND ND ND ND ND ND ND																
Berylliam, Total																
Chromium, Total				_		ND				ND					ND	ND
Hexavalent Chronium (Cr VI)	Cadmium, Total	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND				ND	
Copper_Fixed Mught 1300 P 0.74 0.56 0.83 0.81 1 0.73 ND ND ND ND ND ND ND N		ug/l														
Iron, Total				_					0.026							
Lend, Total									1							
Magnesium, Total mg/l 1, 15, 1 1,5 0,836 0,986 ND ND 0,569 0,61 0,726 0,733 4,69 4,74																
Manganes, Total ug/l 50 S 14 13 12 13 3.6 3.4 15 16 4.7 4.6 61 58			13	P												
Mercury			50	S												
Nickel, Total		Ŭ														
Selenium, Total ug/l 50 P ND ND ND ND ND ND ND																
Thallium, Total		ug/l	50	P	ND	ND										
Volatile Organic Compounds Ug/1 5000 S ND ND ND ND ND ND ND		ug/l	100	S	ND	ND										
Volatile Organic Compounds	Thallium, Total															
1,1-Dichloroethane		ug/l	5000	S	ND	ND										
1,1-Dichloroethylene			_	n) IID	\ \m) ID) I'D) ID	\ \m) ID) I'D) VD) ID	N/D) ID
1,2-Dichloroethane																
Benzene																
Carbon Tetrachloride	D	/1	1						MD				3.775			
Chlorobenzene			0.5													
Chloromethane (Methyl Chloride) mg/l ND ND ND ND ND ND																
Di-Isopropyl Ether																
Ethylbenzene ug/l 300 P ND		ug/l	6	P												
Ethyl Tert Butyl Ether ug/l ND N																
Freon 11	Ethylbenzene		300	P												
Freon 113				_												
Methylene Chloride		_		_												
MTBE ug/l 13 P ND																
Styrene																
Tert Amyl Methyl Ether																
TBA			100	Ė												
Tetrachloroethylene (PCE)			12	N		.,,,				.,,,						.,_
Toluene					ND	ND										
Total Trihalomethanes																
Trichloroethylene (TČE)		ug/l	80	P	ND	ND										
Vinyl chloride (VC) Ug/l 0.5 P ND ND ND ND ND ND ND																
Xylenes (Total)																
Others ug/l l ND ND <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		ug/l	1750	P	ND	ND										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				2.1	NE	NE	N/D	N/D) ID	N.T.	N/D	ND) ID) In) ID	NE
Surfactants mg/l 0.5 S 0.057 ND			1 2													
1300137780005301000 1 109/1 1 1 1/ 1 1/ 1 10 1 13 1 4 1 14 1 13 1 /4 1 1/ 1 13 1 1/0 1 118/1	Total Organic Carbon	mg/l	0.5	ی	17	17	10	13	4	5.4	1.5	2.4	1.2	1.5	0.79	0.84

TABLE 3.1 CENTRAL BASIN WATER QUALITY RESULTS REGIONAL GROUNDWATER MONITORING - WATER YEAR 2021-2022 Page 17 of 38

			уре					Los An	geles #1				
Constituents	Units	MCL	MCL Type	Zor 4/5/2022	ne 1 9/28/2022	Zor 4/5/2022	ne 2 9/28/2022		ne 3 9/28/2022	Zo: 4/5/2022	ne 4 9/28/2022	Zo 4/5/2022	ne 5 9/28/2022
General Minerals	ר	~	2	4/5/2022	9/28/2022	4/5/2022	9/28/2022	4/5/2022	9/28/2022	4/5/2022	9/28/2022	4/5/2022	9/28/2022
Alkalinity	mg/l			190	180	190	180	190	180	200	200	230	220
Anion Sum	meq/l			6.1	5.9	6.2	6.3	6.4	6.2	7.6	7.6	11	11
Bicarbonate as HCO3	mg/l	1	NI	230	220	230	230 0.15	230	230	250	240	280 0.19	270 0.19
Boron Bromide	mg/l ug/l	1	N	0.15 ND	0.14 ND	0.14 ND	ND	0.15 ND	0.14 ND	0.15 ND	0.15 ND	ND	0.19 ND
Calcium, Total	mg/l			53.7	53.7	60.5	62.1	58.9	60.1	74	74.9	104	106
Carbon Dioxide	mg/l			168	161	170	166	172	167	184	180	205	198
Carbonate as CO3	mg/l			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cation Sum	meq/l	500		5.6	5.5	5.9	6	5.8	5.8	7.2	7.1	9.8	9.9
Chloride Fluoride	mg/l mg/l	500	S	25 0.26	0.26	0.43	25 0.37	25 0.37	24 0.42	38 0.4	38 0.4	79 0.38	79 0.37
Hydroxide as OH, Calculated	mg/l		1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Iodide	ug/l			21	21	18	ND	ND	19	14	16	ND	ND
Nitrate (as NO3)	mg/l	45	P	ND	ND	ND	ND	ND	ND	12	11	61	58
Nitrate as Nitrogen	mg/l	10	P	ND	ND	ND	ND	ND	ND	2.8	2.5	14	13
Nitrite, as Nitrogen	mg/l	1	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Potassium, Total Sodium, Total	mg/l mg/l			4 42	4 41	3.5	3.4	3.3	3.4	4 44	43	4.6 54	4.6 54
Sulfate	mg/l	500	S	77	78	86	91	89	89	110	110	140	140
Total Dissolved Solid (TDS)	mg/l	1000	S	350	340	350	350	360	350	430	440	620	620
Nitrate + Nitrite, as Nitrogen	mg/l	10	P	ND	ND	ND	ND	ND	ND	2.8	2.5	14	13
General Physical Properties													
Apparent Color	ACU	15	S	ND	ND	3	ND	ND	ND	ND	ND	4	3
Hardness (Total, as CaCO3)	mg/l			182	179	209	214	205	206	259	260	368	370
Lab pH Langelier Index - 25 degree	Units None		H	7.97 0.544	8.12 0.673	7.82 0.446	7.95 0.564	7.81 0.422	7.92 0.52	7.81 0.527	7.92 0.639	7.79 0.676	7.93 0.805
Odor	TON	3	S	0.544 ND	0.673 ND	0.446 ND	0.564 ND	0.422 ND	0.52 ND	0.527 ND	0.639 ND	0.676 ND	0.805 ND
Specific Conductance	umho/cn	1600	S	600	550	620	580	630	550	760	680	1100	970
Turbidity	NTU	5	S	ND	ND	0.75	ND	ND	0.45	ND	ND	ND	ND
Metals													
Aluminum, Total	ug/l	1000	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Antimony, Total	ug/l	6	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Arsenic, Total	ug/l	1000	P P	ND 29	ND 20	ND 51	0.62 77	0.6 74	ND 50	1.1 95	93	0.6 150	0.68 140
Barium, Total Beryllium, Total	ug/l ug/l	1000	P	ND	28 ND	ND	ND	ND	ND	ND	ND	ND	ND
Cadmium, Total	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chromium, Total	ug/l	50	P	ND	ND	ND	0.39	0.33	ND	45	44	260	250
Hexavalent Chromium (Cr VI)	ug/l	10	P	0.077	0.09	0.03	0.35	0.33	0.04	49	46	290	280
Copper, Total	ug/l	1300	P	0.84	ND	ND	0.61	0.56	ND	0.62	0.56	0.74	0.75
Iron, Total	mg/l	0.3	S	ND	ND	0.19	ND	ND	0.15	ND	ND	ND	ND
Lead, Total Magnesium, Total	ug/l mg/l	15	P	ND 11.6	ND 11	ND 14.1	ND 14.4	ND 14.1	ND 13.5	ND 18	ND 17.6	ND 26.2	ND 25.8
Manganese, Total	ug/l	50	S	14	20	51	6.9	6.4	57	3.1	3.1	ND	ND
Mercury	ug/l	2	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Nickel, Total	ug/l	100	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Selenium, Total	ug/l	50	P	ND	ND	ND	0.6	0.54	ND	0.68	0.7	3.5	3.5
Silver, Total	ug/l	100	S	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Thallium, Total	ug/l	2	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Zinc, Total Volatile Organic Compounds	ug/l	5000	S	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethylene	ug/l	6	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	ug/l	0.5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzene	ug/l	1	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Tetrachloride	ug/l	0.5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene Chloromethane (Methyl Chloride)	ug/l ug/l	70	P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
cis-1,2-Dichloroethylene	ug/l ug/l	6	P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Di-Isopropyl Ether	ug/l	Ĭ	Ħ	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	ug/l	300	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethyl Tert Butyl Ether	ug/l			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Freon 11	ug/l	150	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Freon 113	ug/l	1200		ND	ND ND	ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND ND
Methylene Chloride MTBE	ug/l	5	P P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Styrene	ug/l ug/l	100	P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Tert Amyl Methyl Ether	ug/l	100	Ħ	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TBA	ug/l	12	N										
Tetrachloroethylene (PCE)	ug/l	5	P	0.93	0.62	ND	ND	ND	ND	0.66	0.56	ND	2.5
Toluene	ug/l	150	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total Trihalomethanes	ug/l	80	P	ND	ND ND	ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND ND
trans-1,2-Dichloroethylene Trichloroethylene (TCE)	ug/l ug/l	10	P P	ND 2.4	ND 1.1	ND ND	ND ND	ND ND	ND ND	ND 6.6	ND 5.7	ND ND	ND 34
Vinyl chloride (VC)	ug/l ug/l	0.5	P	ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND	ND
Xylenes (Total)	ug/l	1750	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Others							- 72		- 72	- 12	1		
1,4-Dioxane	ug/l	1	N	ND	ND	ND	ND	ND	ND	ND	0.19	0.2	ND
Perchlorate	ug/l	6	P	ND	ND	ND	ND	ND	ND	0.64	0.54	3.2	2.8
Surfactants	mg/l	0.5	S	ND 0.42	ND 0.45	ND	ND	ND	ND	ND 0.42	ND	ND 0.42	ND 0.40
Total Organic Carbon	mg/l			0.42	0.45	ND	ND	ND	ND	0.43	0.41	0.43	0.49

TABLE 3.1 CENTRAL BASIN WATER QUALITY RESULTS REGIONAL GROUNDWATER MONITORING - WATER YEAR 2021-2022 Page 18 of 38

			уре					geles #2			
Constituents	Units	MCL	MCL Type	Zor 4/7/2022	ne 2 9/7/2022	Zor 4/7/2022	ne 3 9/7/2022		ne 4 9/7/2022	Zo: 4/7/2022	ne 5 9/7/2022
General Minerals											
Alkalinity	mg/l			320	310	320	320	350	340	310	310
Anion Sum	meq/l			19	19	19	19	19	19	24	23
Bicarbonate as HCO3 Boron	mg/l	1	N	390 0.25	380 0.24	390 0.23	390 0.23	420 0.28	410 0.28	380 0.42	380 0.42
Bromide	mg/l ug/l	1	IN	ND	ND	ND	ND	ND	ND	ND	ND
Calcium, Total	mg/l			195	197	193	194	185	185	215	218
Carbon Dioxide	mg/l			308	295	317	303	345	323	312	287
Carbonate as CO3	mg/l			ND	ND	ND	ND	ND	ND	ND	ND
Cation Sum	meq/l			19	19	18	18	19	19	22	22
Chloride	mg/l	500	S	250	250	260	260	220	220	160	160
Fluoride	mg/l	2	P	ND	ND	0.26	0.25	0.28	0.27	0.26	0.24
Hydroxide as OH, Calculated	mg/l			ND	ND	ND	ND	ND	ND	ND	ND
Iodide	ug/l			68	62	59	52	65	59	33	38
Nitrate (as NO3)	mg/l	45	P	ND	ND	ND	ND	ND	ND	ND	ND
Nitrate as Nitrogen	mg/l	10	P	ND	ND	ND	ND	ND	ND	ND	ND
Nitrite, as Nitrogen	mg/l	1	P	ND 12	ND	ND 8.2	ND 7.7	ND	ND	ND 11	ND
Potassium, Total Sodium, Total	mg/l mg/l			100	11 99	8.2 100	99	8.8 120	8.3 120	150	11 150
Sulfate	mg/l	500	S	270	270	250	250	280	290	640	590
Total Dissolved Solid (TDS)	mg/l mg/l	1000	S	1200	1200	1100	1100	1200	1100	1500	1500
Nitrate + Nitrite, as Nitrogen	mg/l	10	P	ND	ND	ND	ND	ND	ND	ND	ND
General Physical Properties	g/1	.0					.10	.10			
Apparent Color	ACU	15	S	4	ND	15	4	20	15	ND	3
Hardness (Total, as CaCO3)	mg/l			699	711	682	688	653	657	778	793
Lab pH	Units			7.4	7.52	7.25	7.4	7.23	7.4	7.2	7.64
Langelier Index - 25 degree	None			0.621	0.731	0.478	0.63	0.467	0.636	0.418	0.864
Odor	TON	3	S	ND	ND	ND	ND	ND	ND	ND	ND
Specific Conductance	umho/cm		S	2000	2100	2000	2100	2000	2100	2300	2400
Turbidity	NTU	5	S	1	1	8.6	5.1	12	11	3.3	3
Metals											
Aluminum, Total	ug/l	1000		ND	ND	ND	ND	ND	ND	ND	ND
Antimony, Total	ug/l	6	P	ND	ND	ND	ND	ND	ND	19	28
Arsenic, Total	ug/l	10	P	ND	ND	ND	ND 120	ND	ND	2.7	3.7
Barium, Total	ug/l	1000	P	85 ND	86	120	130	88 ND	89 ND	50	54
Beryllium, Total Cadmium, Total	ug/l	5	P P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 0.27	ND 0.87
Chromium, Total	ug/l ug/l	50	P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND
Hexavalent Chromium (Cr VI)	ug/l	10	P	ND	ND	ND	ND	ND	ND	ND	0.032
Copper, Total	ug/l	1300	P	ND	ND	ND	ND	ND	ND	0.89	1.1
Iron, Total	mg/l	0.3	S	0.19	0.19	1.1	1.1	1.2	1.3	0.11	0.14
Lead, Total	ug/l	15	P	ND	ND	ND	ND	ND	ND	ND	ND
Magnesium, Total	mg/l			51.5	52.9	48.5	49.5	46.2	47	58.4	60.4
Manganese, Total	ug/l	50	S	370	370	180	180	100	99	530	630
Mercury	ug/l	2	P	ND	ND	ND	ND	ND	ND	ND	ND
Nickel, Total	ug/l	100	P	ND	ND	ND	ND	ND	ND	2.5	3.2
Selenium, Total	ug/l	50	P	ND	ND	ND	ND	ND	ND	ND	ND
Silver, Total	ug/l	100	S	ND	ND	ND	ND	ND	ND	ND	ND
Thallium, Total	ug/l	2	P	ND	ND	ND	ND	ND	ND	ND	ND
Zinc, Total	ug/l	5000	S	ND	ND	ND	ND	ND	ND	210	460
Volatile Organic Compounds 1,1-Dichloroethane	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND
1.1-Dichloroethylene	ug/l	6	P	ND	ND	ND	ND ND	ND	ND ND	ND ND	ND ND
1,2-Dichloroethane	ug/l	0.5	P	ND	ND	ND	ND	ND	ND	ND	ND
Benzene	ug/l	1	P	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Tetrachloride	ug/l	0.5	P	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	ug/l	70	P	ND	ND	ND	ND	ND	ND	ND	ND
Chloromethane (Methyl Chloride)	ug/l			ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethylene	ug/l	6	P	ND	ND	ND	ND	ND	ND	ND	0.52
Di-Isopropyl Ether	ug/l		أكا	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	ug/l	300	P	ND	ND	ND	ND	ND	ND	ND	ND
Ethyl Tert Butyl Ether	ug/l	1	Ļ	ND	ND	ND	ND	ND	ND	ND	ND
Freon 11	ug/l	150	P	ND	ND	ND	ND	ND	ND	ND	ND
Freon 113	ug/l	1200		ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND
Methylene Chloride MTBE	ug/l	5	P P	ND ND	ND ND	ND ND	ND ND	ND 2.1	ND 7.4	ND ND	ND ND
Styrene	ug/l ug/l	13	P	ND ND	ND ND	ND ND	ND ND	3.1 ND	7.4 ND	ND ND	ND ND
Tert Amyl Methyl Ether	ug/l	100	1	ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND ND
TBA	ug/l	12	N	1,10	1,10	110	140	140	140	1410	1,12
Tetrachloroethylene (PCE)	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	ug/l	150	P	ND	ND	ND	ND	ND	ND	ND	ND
Total Trihalomethanes	ug/l	80	P	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethylene	ug/l	10	P	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethylene (TCE)	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl chloride (VC)	ug/l	0.5	P	ND	ND	ND	ND	ND	ND	ND	ND
Xylenes (Total)	ug/l	1750	P	ND	ND	ND	ND	ND	ND	ND	ND
Others											
1,4-Dioxane	ug/l	1	N	ND	ND	0.11	0.14	1.4	2.2	0.52	0.64
Perchlorate	ug/l	6	P	ND	ND	ND	ND	ND	ND	ND	ND
Surfactants	mg/l	0.5	S	ND	ND 0.70	ND	ND	ND	ND	ND	ND
Total Organic Carbon	mg/l			0.75	0.79	0.77	0.7	0.8	0.71	1.4	1.7

TABLE 3.1 CENTRAL BASIN WATER QUALITY RESULTS REGIONAL GROUNDWATER MONITORING - WATER YEAR 2021-2022 Page 19 of 38

			be				age 17		Los An	galas #3	<u> </u>				
Constituents	Units	MCL	MCL Type	Zor			ne 2	Zor	ne 3	Zot	ne 4		ne 5		ne 6
General Minerals	U	Σ	Σ	5/12/2022	9/23/2022	5/12/2022	9/23/2022	5/12/2022	9/23/2022	5/12/2022	9/23/2022	5/12/2022	9/23/2022	5/12/2022	9/23/2022
Alkalinity	mg/l			240	250	180	180	190	190	200	190	210	200	260	250
Anion Sum	meq/l			6.5	6.6	6.2	6.2	6.2	6.2	6.9	6.9	9.2	9.1	13	13
Bicarbonate as HCO3	mg/l			290	300	220	220	230	230	240	240	260	250	310	310
Boron	mg/l	1	N	0.36	0.35	0.14	0.14	0.15	0.15	0.15	0.15	0.19	0.19	0.2	0.21
Bromide	ug/l			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.51
Calcium, Total	mg/l			16.3	15.6	59.6	57.6	59.8	58.8	66.1	66	90.6	87.2	140	139
Carbon Dioxide Carbonate as CO3	mg/l			217 ND	217 ND	166 ND	162 ND	172 ND	167 ND	178 ND	173 ND	192 ND	183 ND	235 ND	227 ND
Carbonate as CO3 Cation Sum	mg/l meq/l			6.2	6.1	5.9	5.8	5.9	5.8	6.4	6.4	8.6	8.4	12	12
Chloride	mg/l	500	S	41	41	29	32	24	24	42	43	63	63	130	130
Fluoride	mg/l	2	P	0.28	0.28	0.3	0.29	0.42	0.42	0.4	0.39	0.3	0.3	0.31	0.3
Hydroxide as OH, Calculated	mg/l		Ť	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Iodide	ug/l			51	64	30	39	21	25	33	37	ND	ND	ND	ND
Nitrate (as NO3)	mg/l	45	P	ND	ND	ND	ND	ND	ND	ND	ND	41	41	30	30
Nitrate as Nitrogen	mg/l	10	P	ND	ND	ND	ND	ND	ND	ND	ND	9.2	9.2	6.7	6.8
Nitrite, as Nitrogen	mg/l	1	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Potassium, Total	mg/l			4.9	4.7	3.9	3.8	4	4	4.3	4.4	4.6	4.5	4.8	4.9
Sodium, Total	mg/l		_	110	110	40	39	39	39	42	42	52	51	60	61
Sulfate	mg/l	500	S	26	26	78	77	83	84	84	86	120	120	200	200
Total Dissolved Solid (TDS)	mg/l	1000		380 ND	380 ND	350 ND	350 ND	350 ND	360 ND	400 ND	390 ND	550	550 9.2	800	780
Nitrate + Nitrite, as Nitrogen General Physical Properties	mg/l	10	P	ND	ND	ND	ND	ND	ND	ND	ND	9.2	9.2	6.7	6.8
Apparent Color	ACU	15	S	15	12	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hardness (Total, as CaCO3)	mg/l	13	ی	63.7	61.7	204	199	204	201	225	225	314	304	479	481
Lab pH	Units			7.81	8.31	7.94	8.08	7.85	8.01	7.84	8.02	7.73	7.98	7.73	7.96
Langelier Index - 25 degree	None			-0.039	0.458	0.536	0.661	0.471	0.621	0.515	0.674	0.53	0.742	0.769	0.981
Odor	TON	3	S	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Specific Conductance	ımho/cn	1600		610	630	560	580	560	580	620	650	840	870	1200	1200
Turbidity	NTU	5	S	ND	ND	0.1	0.15	ND	0.1	0.15	0.15	0.15	0.1	ND	0.15
Metals															
Aluminum, Total	ug/l	1000	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Antimony, Total	ug/l	6	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Arsenic, Total	ug/l	10	P	ND	ND	ND	ND	0.84	0.83	ND	ND	0.56	0.58	ND	ND
Barium, Total	ug/l	1000	_	10	9.7	21	21	45	46	73	73	130	130	140	130
Beryllium, Total	ug/l	4	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cadmium, Total	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chromium, Total	ug/l	50	P	ND 0.022	ND	ND	ND	ND ND	ND 0.046	ND	ND 0.025	1.9	1.9	5.1	5.3
Hexavalent Chromium (Cr VI) Copper, Total	ug/l ug/l	10	P P	0.033 ND	0.11 ND	ND ND	ND ND	ND ND	0.046 ND	ND ND	0.025 ND	2.1 ND	2.2 0.75	6 0.5	5.6 0.63
Iron, Total	mg/l	0.3	S	ND	ND	0.037	0.044	ND	ND	0.061	0.065	ND	ND	ND	ND
Lead, Total	ug/l	15	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Magnesium, Total	mg/l	-10	-	5.62	5.5	13.5	13.3	13.3	13.3	14.5	14.7	21.2	20.8	31.7	32.3
Manganese, Total	ug/l	50	S	24	24	83	81	46	44	41	43	ND	ND	ND	ND
Mercury	ug/l	2	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Nickel, Total	ug/l	100	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Selenium, Total	ug/l	50	P	ND	ND	ND	ND	ND	ND	ND	ND	1.6	1.6	9.1	9.7
Silver, Total	ug/l	100	S	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Thallium, Total	ug/l	2	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Zinc, Total	ug/l	5000	S	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Volatile Organic Compounds															
1,1-Dichloroethane	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethylene 1,2-Dichloroethane	ug/l	0.5	P P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
D	ug/l	0.5	P	ND		ND		NID		ND	N.TD	3.775			
Carbon Tetrachloride	ug/l	0.5	P	ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND
Chlorobenzene	ug/l	70	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloromethane (Methyl Chloride)	ug/l	, ,	Ė	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethylene	ug/l	6	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.53	ND
Di-Isopropyl Ether	ug/l			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	ug/l	300	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethyl Tert Butyl Ether	ug/l			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Freon 11	ug/l	150	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Freon 113	ug/l	1200		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene Chloride	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MTBE	ug/l	13	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Styrene Test A med Method Ether	ug/l	100	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tert Amyl Methyl Ether	ug/l	12	N.T	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TBA Tetrachloroethylene (PCE)	ug/l	12	N P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5.7	4.7
Toluene (PCE)	ug/l ug/l	150	P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	4.7 ND
Total Trihalomethanes	ug/l	80	P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.81	0.73	ND ND	ND ND
trans-1,2-Dichloroethylene	ug/l	10	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethylene (TCE)	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND	5.7	4.2	1.3	1.1
Vinyl chloride (VC)	ug/l	0.5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
					ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
		1750	P	ND		INID									
Xylenes (Total) Others	ug/l	1750	P	ND	ND	ND	ND	ND	ND	IND	ND	ND	ND	ND	
Xylenes (Total)		1750	P	ND ND	ND	ND	ND	ND	ND	ND	ND	0.2	0.22	ND	ND
Xylenes (Total) Others	ug/l	1750 1 6													ND 0.95
Xylenes (Total) Others 1,4-Dioxane	ug/l ug/l	1	N	ND	ND	ND	ND	ND	ND	ND	ND	0.2	0.22	ND	

TABLE 3.1 CENTRAL BASIN WATER QUALITY RESULTS REGIONAL GROUNDWATER MONITORING - WATER YEAR 2021-2022

Page 20 of 38

			'pe						Los An	geles #4					
Constituents	Units	MCL	MCL Type	Zor			ne 2	Zor	ne 3	Zot	ne 4		ne 5		ne 6
General Minerals	ū	M	MC	5/4/2022	9/22/2022	5/4/2022	9/22/2022	5/4/2022	9/22/2022	5/4/2022	9/22/2022	5/4/2022	9/22/2022	5/4/2022	9/22/2022
Alkalinity	mg/l			1600	1600	450	450	180	180	180	180	180	180	160	160
Anion Sum	meq/l			33	33	9.3	9.3	5.9	5.9	6	5.9	5.9	5.9	6.8	6.9
Bicarbonate as HCO3	mg/l	1	N	2000 5.3	1900	550 0.49	550 0.52	220 0.12	210 0.13	220 0.12	220 0.13	220 0.12	210 0.13	200 0.14	190 0.15
Boron Bromide	mg/l ug/l	1	IN	0.55	0.57	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Calcium, Total	mg/l			11.5	12.2	17.5	17.4	55.2	55.6	57	57.5	56.6	57.9	63.5	65.1
Carbon Dioxide	mg/l			1430	1420	411	402	161	156	165	161	160	157	150	141
Carbonate as CO3 Cation Sum	mg/l meq/l			ND 29	ND 32	ND 8.4	ND 8.4	ND 5.4	ND 5.5	ND 5.6	ND 5.7	ND 5.4	ND 5.6	ND 6.3	ND 6.5
Chloride	mg/l	500	S	37	37	8.6	8.6	22	22	23	23	23	23	60	68
Fluoride	mg/l	2	P	0.29	0.28	0.23	0.23	0.26	0.26	0.34	0.35	0.31	0.32	0.14	0.13
Hydroxide as OH, Calculated	mg/l			ND 150	ND	ND	ND	ND 19	ND 19	ND 25	ND 27	ND	ND	ND	ND
Nitrate (as NO3)	ug/l mg/l	45	P	150 ND	150 ND	ND	15 ND	ND	ND	25 ND	27 ND	19 ND	19 ND	5.4 6.3	5.6 9.6
Nitrate as Nitrogen	mg/l	10	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.4	2.2
Nitrite, as Nitrogen	mg/l	1	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Potassium, Total Sodium, Total	mg/l mg/l			17 630	19 700	12 150	12 150	3.1	3.2 40	3.7	3.8	3.6	3.7	3.4 49	3.6 51
Sulfate	mg/l	500	S	ND	ND	ND	ND	82	82	81	82	83	83	84	82
Total Dissolved Solid (TDS)	mg/l	1000	S	2000	2000	490	510	320	330	320	320	330	340	380	400
Nitrate + Nitrite, as Nitrogen	mg/l	10	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.4	2.2
General Physical Properties Apparent Color	ACU	15	S	1100	1200	75	25	ND	ND	ND	ND	ND	ND	ND	ND
Hardness (Total, as CaCO3)	mg/l	13		53.2	55.9	73.9	73.1	183	184	194	195	189	193	204	208
Lab pH	Units			7.98	8.21	7.86	8.14	7.87	8.11	7.69	7.99	7.81	8.06	7.7	7.97
Langelier Index - 25 degree	None	2	C	0.596	0.851	0.289	0.562	0.441	0.681	0.275	0.579	0.389	0.646	0.265	0.541
Odor Specific Conductance	TON amho/cn	3 1600	S	2 2900	4 2900	ND 830	ND 860	ND 530	ND 550	ND 540	ND 560	ND 530	ND 550	ND 640	ND 670
Turbidity	NTU	5	S	ND	ND	0.8	1.9	ND	ND	ND	ND	0.5	0.3	0.15	0.1
Metals															
Aluminum, Total	ug/l	1000	P P	ND	20 ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND
Antimony, Total Arsenic, Total	ug/l ug/l	10	P	ND 1.8	2.1	5.8	ND 5.7	ND ND	ND ND	ND 1.9	1.8	ND 1.1	1.3	1.5	ND 1.4
Barium, Total	ug/l	1000	P	33	35	35	34	16	16	68	66	59	58	67	67
Beryllium, Total	ug/l	4	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cadmium, Total Chromium, Total	ug/l ug/l	50	P P	ND 2.3	ND 2.7	ND 0.21	ND 0.26	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 0.59	ND 0.58
Hexavalent Chromium (Cr VI)	ug/l	10	P	0.034	ND	0.097	0.039	0.12	0.058	0.086	0.023	0.054	0.023	0.71	0.58
Copper, Total	ug/l	1300		ND	1.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.75
Iron, Total	mg/l	0.3	S	0.58	0.62	0.13	0.13	ND	ND	ND	ND	0.061	0.059	ND	ND
Lead, Total Magnesium, Total	ug/l mg/l	15	P	ND 5.94	ND 6.19	7.35	ND 7.22	ND 11	ND 10.9	ND 12.6	ND 12.5	ND 11.6	ND 11.7	ND 11	ND 11.1
Manganese, Total	ug/l	50	S	15	17	47	47	39	39	47	48	66	67	80	77
Mercury	ug/l	2	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Nickel, Total Selenium, Total	ug/l ug/l	100 50	P P	ND ND	ND 0.45	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 0.9	ND 0.73
Silver, Total	ug/l	100	S	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Thallium, Total	ug/l	2	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Zinc, Total	ug/l	5000	S	ND	ND	ND	ND	ND	ND	ND	ND	13	ND	ND	ND
Volatile Organic Compounds 1,1-Dichloroethane	ug/l	5	Р	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethylene	ug/l	6	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	ug/l	0.5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzene Corbon Tetrochlorida	ug/l	1	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Tetrachloride Chlorobenzene	ug/l ug/l	0.5 70	P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Chloromethane (Methyl Chloride)	ug/l			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethylene	ug/l	6	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Di-Isopropyl Ether Ethylbenzene	ug/l ug/l	300	P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Ethyl Tert Butyl Ether	ug/l	500	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND
Freon 11	ug/l	150		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Freon 113	ug/l	1200		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene Chloride MTBE	ug/l ug/l	5 13	P P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Styrene	ug/l	100	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tert Amyl Methyl Ether	ug/l			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TBA	ug/l	12	N	3.TD	MD	3.TD	MD	NID	MD	NID	MD	ME	MP	NID	MD
Tetrachloroethylene (PCE) Toluene	ug/l ug/l	5 150	P P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Total Trihalomethanes	ug/l	80	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethylene	ug/l	10	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethylene (TCE)	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl chloride (VC) Xylenes (Total)	ug/l ug/l	0.5	P P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Others	ug/I	1750	1	ND	ND	ND	ND	ND	IND	ND	IND	ND	ND	ND	ND
1,4-Dioxane	ug/l	1	N	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Perchlorate	ug/l	6	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.1
Surfactants Total Organic Carbon	mg/l mg/l	0.5	S	ND 95	ND 130	ND 6.8	ND 6.7	ND 0.44	ND 0.38	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Total Organic Calbon	111g/1	<u> </u>	.	13	130	0.0	0.7	V. 11	0.30	ND	ND	MD	מאז	ND	ND

TABLE 3.1 CENTRAL BASIN WATER QUALITY RESULTS REGIONAL GROUNDWATER MONITORING - WATER YEAR 2021-2022 Page 21 of 38

			,pe						Los An	geles #5	1				
Constituents	Units	MCL	MCL Type	Zor	ne 1	Zor	ne 2	Zor			ne 4	Zo	ne 5	Zoı	ne 6
	Ur	Ř	MC	3/15/2022	9/13/2022	3/14/2022	9/12/2022	3/14/2022	9/12/2022	3/14/2022	9/12/2022	3/14/2022	9/12/2022	3/14/2022	9/12/2022
General Minerals Alkalinity	mg/l			880	860	970	930	170	170	250	250	250	240	200	190
Anion Sum	meg/l			120	120	35	35	5.7	5.6	11	11	9.1	9.1	7.4	7.3
Bicarbonate as HCO3	mg/l			1100	1100	1200	1100	210	200	310	300	300	300	240	230
Boron	mg/l	1	N	7.2	7.5	2.7	2.8	0.13	0.13	0.33	0.36	0.15	0.16	0.14	0.15
Bromide	ug/l			28	50	3.9	4.6	ND	ND	1.2	1.4	0.73	0.77	ND	ND 72.0
Calcium, Total Carbon Dioxide	mg/l mg/l			41.2 793	41.1 778	21.6 859	20.8 831	52.1 156	51.5 149	107 228	107 228	87.8 222	87.5 220	73.2 177	72.2 172
Carbonate as CO3	mg/l			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cation Sum	meq/l			110	110	31	32	5.4	5.3	11	11	8.5	8.4	7.1	6.9
Chloride	mg/l	500	S	3600	3700	560	580	23	23	210	210	130	140	36	37
Fluoride	mg/l	2	P	ND	ND	0.17	ND	0.23	0.23	0.22	0.21	0.27	0.27	0.35	0.35
Hydroxide as OH, Calculated	mg/l			ND 9200	ND 13000	ND 1200	ND 1200	ND 21	ND 21	ND 220	ND 360	ND 160	ND 160	ND 20	ND 20
Iodide Nitrate (as NO3)	ug/l mg/l	45	P	9200 ND	ND	1200 ND	1200 ND	ND	ND	330 ND	ND	160 ND	ND	28 ND	30 ND
Nitrate as Nitrogen	mg/l	10	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Nitrite, as Nitrogen	mg/l	1	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Potassium, Total	mg/l			49	62	20	24	3.5	3.7	5.7	6.2	4.7	5	3.3	3.5
Sodium, Total	mg/l			2400	2300	660	680	44	42	68	68	54	52	47	44
Sulfate	mg/l	500	S	ND	ND	ND	ND	75	77	6.5	3.8	17	17	120	120
Total Dissolved Solid (TDS) Nitrate + Nitrite, as Nitrogen	mg/l mg/l	1000	S P	6700 ND	6900 ND	2000 ND	2000 ND	340 ND	330 ND	690 ND	670 ND	510 ND	520 ND	440 ND	420 ND
General Physical Properties	mg/1	10	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Apparent Color	ACU	15	S	100	120	200	250	3	3	50	5	4	3	ND	ND
Hardness (Total, as CaCO3)	mg/l			293	292	108	106	171	169	370	373	303	303	247	244
Lab pH	Units			7.84	7.9	8.14	8.07	7.97	8	7.85	7.66	7.93	7.84	7.9	7.75
Langelier Index - 25 degree	None	2	C	0.567	0.612	0.812	0.707	0.486	0.513	0.772	0.586	0.8	0.689	0.609	0.436
Odor Specific Conductance	TON amho/cm	3 1600	S	ND 11000	12000	ND 3300	ND 3300	ND 470	10 480	ND 970	1000	ND 770	2 820	ND 600	ND 630
Turbidity	NTU	5	S	0.2	0.2	0.3	0.15	0.1	0.15	0.85	1.1	0.4	0.45	0.15	0.15
Metals							0.20		0.120	0.00			0.10	0.110	0.11
Aluminum, Total	ug/l	1000		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Antimony, Total	ug/l	6	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Arsenic, Total	ug/l	10 1000	P P	0.45 65	ND (2	ND 28	ND 20	ND 24	ND 25	0.9 93	0.82 99	0.45 93	0.5 90	0.44 62	0.44 60
Barium, Total Beryllium, Total	ug/l ug/l	4	P	ND	63 ND	ND	28 ND	ND	ND	ND	ND	ND	ND	ND	ND
Cadmium, Total	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chromium, Total	ug/l	50	P	0.32	0.42	1	1.1	ND	ND	ND	ND	ND	ND	ND	ND
Hexavalent Chromium (Cr VI)	ug/l	10	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Copper, Total	ug/l	1300	P	ND	ND	ND	ND	ND	ND	ND	ND	5.4	ND	ND	ND
Iron, Total Lead, Total	mg/l	0.3	S	0.33	0.34 ND	0.22 ND	0.22 ND	0.03 ND	0.031 ND	0.33 ND	0.35 ND	0.18 ND	0.19 ND	ND ND	ND ND
Magnesium, Total	ug/l mg/l	13	P	46.2	45.9	13.2	13.2	9.87	9.86	25.3	25.8	20.3	20.5	15.7	15.6
Manganese, Total	ug/l	50	S	32	31	44	41	38	36	140	140	150	160	32	31
Mercury	ug/l	2	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Nickel, Total	ug/l	100	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Selenium, Total	ug/l	50	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Silver, Total Thallium, Total	ug/l ug/l	100	S P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Zinc, Total	ug/l	5000	S	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND ND	ND	ND
Volatile Organic Compounds	ug/1	2000		1,12	1,12	1,12	1,12	1,12	TID	1.2	112	1.12	112	1.12	1,12
1,1-Dichloroethane	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethylene	ug/l	6	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	ug/l	0.5	P	ND	ND	ND	ND	ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND
Benzene Carbon Tetrachloride	ug/l ug/l	0.5	P P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Chlorobenzene	ug/l	70	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloromethane (Methyl Chloride)	ug/l	Ľ		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethylene	ug/l	6	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Di-Isopropyl Ether	ug/l	200	_	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene Ethyl Tert Butyl Ether	ug/l ug/l	300	P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Freon 11	ug/l ug/l	150	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND ND
Freon 113	ug/l	1200	_	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene Chloride	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MTBE	ug/l	13	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Styrene	ug/l	100	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tert Amyl Methyl Ether TBA	ug/l ug/l	12	N	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethylene (PCE)	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	ug/l	150	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total Trihalomethanes	ug/l	80	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethylene	ug/l	10	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethylene (TCE)	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl chloride (VC)		0.5	P	ND	ND	ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND
	ug/l		ъ	3.175	N.T.D							NII)			ND
Xylenes (Total)	ug/l ug/l	1750	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1,12
Xylenes (Total) Others	ug/l														
Xylenes (Total)	_	1750	P N P	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Xylenes (Total) Others 1,4-Dioxane	ug/l ug/l	1750	N	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

TABLE 3.1 CENTRAL BASIN WATER QUALITY RESULTS REGIONAL GROUNDWATER MONITORING - WATER YEAR 2021-2022 Page 22 of 38

			уре					geles #6			
Constituents	Units	MCL	MCL Type	Zor 4/28/2022	ne 1 9/14/2022	Zo: 4/28/2022	ne 2 9/14/2022		ne 3 9/14/2022	Zo 4/28/2022	ne 4 9/14/2022
General Minerals											
Alkalinity	mg/l			270	300	270	220	290	280	250	250
Anion Sum Bicarbonate as HCO3	meq/l			14 330	14 370	9.6 330	8.6 270	15 360	15 340	300	12 310
Boron	mg/l mg/l	1	N	0.44	0.43	0.27	0.27	0.38	0.38	0.24	0.24
Bromide	ug/l	1	IN	1.9	2.2	0.7	0.81	1.9	2.3	ND	0.53
Calcium, Total	mg/l			11.2	11	43.3	43	71.8	71.4	106	105
Carbon Dioxide	mg/l			244	269	242	195	270	252	235	233
Carbonate as CO3	mg/l			ND	ND	ND	ND	ND	ND	ND	ND
Cation Sum	meq/l			13	13	8.1	8	14	14	11	11
Chloride	mg/l	500	S	290	290	130	130	310	320	120	120
Fluoride	mg/l	2	P	ND	0.2	0.23	0.23	ND	ND	0.36	0.36
Hydroxide as OH, Calculated	mg/l			ND	ND	ND	ND	ND	ND	ND	ND
Iodide	ug/l			740	770	270	230	970	880	81	69
Nitrate (as NO3)	mg/l	45	P	ND	ND	ND	ND	ND	ND	ND	ND
Nitrate as Nitrogen	mg/l	10	P	ND	ND	ND	ND	ND	ND	ND	ND
Nitrite, as Nitrogen	mg/l	1	P	ND	ND	ND	ND	ND	ND	ND	ND
Potassium, Total	mg/l			18	17	8.5	8.1	12	12	6	5.6
Sodium, Total Sulfate	mg/l mg/l	500	S	270 ND	270 ND	110 27	110 28	200	200 ND	74 150	74 150
Total Dissolved Solid (TDS)	mg/l	1000	S	790	800	460	480	800	820	640	660
Nitrate + Nitrite, as Nitrogen	mg/l mg/l	1000	P	ND	ND	ND	ND	ND	ND	ND	ND
General Physical Properties	111g/1	10	1	TAD	1,10	140	1410	140	140	ND	1,15
Apparent Color	ACU	15	S	22	25	5	ND	10	7.5	ND	ND
Hardness (Total, as CaCO3)	mg/l			54.3	53	156	154	251	248	371	366
Lab pH	Units			8.01	8.2	7.87	8.07	7.7	8	7.4	7.73
Langelier Index - 25 degree	None			-0.031	0.195	0.477	0.58	0.496	0.775	0.327	0.65
Odor	TON	3	S	ND	ND	ND	ND	ND	2	ND	ND
Specific Conductance	amho/cm		S	1500	1600	820	880	1600	1700	1000	1100
Turbidity	NTU	5	S	0.35	0.2	ND	0.1	0.15	0.15	0.2	0.35
Metals											
Aluminum, Total	ug/l	1000		ND	ND	ND	ND	ND	ND	ND	ND
Antimony, Total	ug/l	6	P	ND	ND	ND	ND	ND	ND	ND	ND
Arsenic, Total	ug/l	10	P	0.42	ND	ND	ND	ND	ND	1.4	1.3
Barium, Total	ug/l	1000	P	29	28	37	35	82	79	82	74
Beryllium, Total	ug/l	4	P	ND	ND	ND	ND	ND	ND	ND	ND
Cadmium, Total	ug/l	5	P P	ND 0.21	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Chromium, Total	ug/l	50 10	P	0.21 ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Hexavalent Chromium (Cr VI) Copper, Total	ug/l ug/l	1300	P	0.56	0.57	ND ND	ND ND	ND ND	ND ND	5.1	ND ND
Iron, Total	mg/l	0.3	S	0.05	0.052	ND	ND	0.079	0.077	0.097	0.11
Lead, Total	ug/l	15	P	ND	ND	ND	ND	ND	ND	ND	ND
Magnesium, Total	mg/l	13	1	6.38	6.2	11.5	11.2	17.3	17	26	25.3
Manganese, Total	ug/l	50	S	26	26	47	48	72	74	120	110
Mercury	ug/l	2	Р	ND	ND	ND	ND	ND	ND	ND	ND
Nickel, Total	ug/l	100	P	ND	ND	ND	ND	ND	ND	4.2	ND
Selenium, Total	ug/l	50	P	ND	ND	ND	ND	ND	ND	ND	ND
Silver, Total	ug/l	100	S	ND	ND	ND	ND	ND	ND	ND	ND
Thallium, Total	ug/l	2	P	ND	ND	ND	ND	ND	ND	ND	ND
Zinc, Total	ug/l	5000	S	ND	ND	ND	ND	ND	ND	ND	ND
Volatile Organic Compounds											
1,1-Dichloroethane	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethylene	ug/l	6	P	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane Benzene	ug/l ug/l	0.5	P P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Carbon Tetrachloride	ug/l ug/l	0.5	P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Chlorobenzene	ug/l	70	P	ND	ND	ND	ND	ND	ND	ND	ND ND
Chloromethane (Methyl Chloride)	ug/l	, 0	É	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethylene	ug/l	6	P	ND	ND	ND	ND	ND	ND	17	11
Di-Isopropyl Ether	ug/l			ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	ug/l	300	P	ND	ND	ND	ND	ND	ND	ND	ND
Ethyl Tert Butyl Ethei	ug/l			ND	ND	ND	ND	ND	ND	ND	ND
Freon 11	ug/l	150	P	ND	ND	ND	ND	ND	ND	ND	ND
Freon 113	ug/l	1200		ND	ND	ND	ND	ND	ND	ND	ND
Methylene Chloride	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND
MTBE	ug/l	13	P	ND	ND	ND	ND	ND	ND	ND	ND
Styrene	ug/l	100	P	ND	ND	ND	ND	ND	ND	ND	ND
Tert Amyl Methyl Ether	ug/l	1.0	Ļ	ND	ND	ND	ND	ND	ND	ND	ND
TBA	ug/l	12	N	NE	MB	NE	370	NE	375	370	MD
Tetrachloroethylene (PCE)	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND
Toluene Total Tribalomethones	ug/l	150	P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Total Trihalomethanes trans-1,2-Dichloroethylene	ug/l	10	P P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Trichloroethylene (TCE)	ug/l ug/l	5	P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 9.6	7.9
Vinyl chloride (VC)	ug/l ug/l	0.5	P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	9.6 ND	ND
Xylenes (Total)	ug/l	1750		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Others	ug/1	1/30	1	ND	ND	MD	1410	IAD	MD	ND	ND
1,4-Dioxane	ug/l	1	N	ND	ND	ND	ND	ND	ND	0.11	0.16
Perchlorate	ug/l	6	P	ND	ND	ND	ND	ND	ND	ND	ND
Surfactants	mg/l	0.5	S	ND	ND	ND	ND	ND	ND	ND	ND
Total Organic Carbon	mg/l			2.3	2.2	1	1	2.1	2	0.61	0.56
6									·		

TABLE 3.1 CENTRAL BASIN WATER QUALITY RESULTS REGIONAL GROUNDWATER MONITORING - WATER YEAR 2021-2022

Page 23 of 38

Constituents General Minerals Alkalinity Anion Sum Bicarbonate as HCO3 Boron Bromide	ng/l	MCL	MCL Type	Zor 5/10/2022		Zor	ne 2	Zor													
Alkalinity Anion Sum Bicarbonate as HCO3 Boron		,			9/26/2022	5/10/2022	9/26/2022	5/11/2022	9/27/2022	Zot 5/11/2022	ne 4	Zo1 5/11/2022	ne 5	Zot 5/11/2022	ne 6	Zor 5/11/2022	ne 7	Zo1 5/10/2022	ne 8	Zot 5/11/2022	ne 9
Anion Sum Bicarbonate as HCO3 Boron	mc/1																				
Bicarbonate as HCO3 Boron				570	570	140	140	120	120	140	140	160	160	170	160	180	180	190	190	310	300
Boron	meq/l mg/l			12 700	12 670	4.4 150	4.4 150	4.7 140	4.7 140	5.2 170	5.2 170	4.9	4.8	5.6	5.5	5.9 220	5.8 220	7.7	7.9	17 370	18 370
	mg/l	1	N	1.4	1.3	0.18	0.17	0.11	0.1	0.09	0.086	0.089	0.086	0.13	0.12	0.12	0.12	0.13	0.13	0.18	0.17
Diomide	ug/l			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.53
Calcium, Total	mg/l			9.98	9.57	5.6	5.48	39.2	38.5	46.9	45.4	43.9	43.4	53.5	51.7	58.7	57.1	77.2	79.6	212	200
Carbon Dioxide	mg/l			505	503	120	117	104	104	125	121	144	140	150	146	164	158	173	171	289	273
Carbonate as CO3 Cation Sum	mg/l meg/l			ND 11	19 10	13 3.9	3.8	ND 4.3	ND 4.2	ND 4.9	ND 4.8	ND 4.5	ND 4.4	ND 5.2	ND 5	ND 5.6	ND 5.4	ND 7	ND 7.1	ND 18	ND 17
Chloride	mg/l	500	S	12	12	23	23	23	23	23	23	21	22	22	23	24	23	52	56	170	170
Fluoride	mg/l	2	P	0.47	0.48	0.36	0.38	0.28	0.27	0.24	0.24	0.25	0.24	0.33	0.32	0.3	0.29	0.36	0.36	0.26	0.26
Hydroxide as OH, Calculated	mg/l			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Iodide	ug/l			32	30	27	33	18	21	20	22	21	23	20	22	18	21	ND	ND	110	150
Nitrate (as NO3)	mg/l	45 10	P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	6	7.2	ND ND	ND ND
Nitrate as Nitrogen Nitrite, as Nitrogen	mg/l mg/l	10	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.4 ND	1.6 ND	ND	ND
Potassium, Total	mg/l	1	1	3.2	2.9	0.79	0.6	1.4	1.2	2	1.7	2.2	2	3.6	3.3	3.1	2.9	3.6	3.4	5.7	5.2
Sodium, Total	mg/l			230	220	83	80	43	42	48	46	47	46	36	35	38	37	40	40	73	70
Sulfate	mg/l	500	S	ND	ND	46	47	81	82	85	86	50	51	75	77	77	78	110	120	270	360
Total Dissolved Solid (TDS)	mg/l	1000	S	470	680	680	240	260	270	290	300	260	270	320	310	340	340	440	450	1100	1100
Nitrate + Nitrite, as Nitrogen	mg/l	10	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.4	1.6	ND	ND
General Physical Properties Apparent Color	ACU	15	S	200	200	50	38	3	3	3	3	ND	ND	ND	ND	ND	ND	ND	ND	5	7.5
Hardness (Total, as CaCO3)	mg/l	13	J	33.2	31.6	14	13.7	120	117	141	135	121	119	179	171	193	187	260	266	718	673
Lab pH	Units			8.28	8.33	8.6	8.77	8.1	8.23	8.06	8.19	8.08	8.23	7.98	8.15	7.94	8.15	7.8	7.88	7.48	7.84
Langelier Index - 25 degree	None			0.571	0.562	-0.012	0.248	0.364	0.482	0.46	0.572	0.518	0.659	0.513	0.644	0.532	0.73	0.51	0.601	0.735	1.06
Odor	TON	3	S	17	4	2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1	mho/cn	1600	S	1000	1100	410	420	440	440	480	480	450	450	500	510	520	540	670	720	1800	1600
Turbidity Metals	NTU	5	S	1.7	0.3	0.1	0.25	ND	0.1	ND	0.15	ND	0.1	ND	ND	ND	ND	ND	0.1	1.9	1.7
Aluminum, Total	ug/l	1000	P	ND	ND	22	23	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Antimony, Total	ug/l	6	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Arsenic, Total	ug/l	10	P	230	220	0.76	0.79	ND	ND	0.41	0.43	4.6	4.7	0.8	0.8	1.5	1.2	1.7	1.6	7.3	7.3
Barium, Total	ug/l	1000	P	15	14	2	2	4.6	4.4	160	160	110	110	46	45	110	110	110	120	130	130
Beryllium, Total	ug/l	4	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cadmium, Total Chromium, Total	ug/l ug/l	50	P P	ND 0.5	ND 0.5	ND 0.31	ND 0.3	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 0.65	ND 0.7	ND ND	ND ND
Hexavalent Chromium (Cr VI)	ug/l	10	P	0.25	0.2	0.31	0.04	0.025	0.026	0.04	ND	ND	ND	ND	ND	ND	ND	0.63	0.65	ND	ND
Copper, Total	ug/l	1300	P	ND	ND	0.74	0.71	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Iron, Total	mg/l	0.3	S	0.068	0.062	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.042	0.037	ND	ND	0.37	0.35
Lead, Total	ug/l	15	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Magnesium, Total	mg/l	50	S	12	1.87	ND 2.9	ND 2.9	5.36	5.03	5.74	5.37	2.74	2.49	10.9 60	10.2	11.4	10.7	16.3	16.3	45.6 250	42.2
Manganese, Total Mercury	ug/l ug/l	2	P	ND	ND	ND	ND	15 ND	15 ND	ND	ND	ND	ND	ND	61 ND	85 ND	85 ND	1.1 ND	1.3 ND	ND	260 ND
Nickel, Total	ug/l	100	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Selenium, Total	ug/l	50	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.89	1	ND	ND
Silver, Total	ug/l	100	S	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Thallium, Total	ug/l	2	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Zinc, Total	ug/l	5000	S	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Volatile Organic Compounds 1,1-Dichloroethane	ug/l	5	Р	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethylene	ug/l	6	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	ug/l	0.5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzene	ug/l	1	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Tetrachloride	ug/l	0.5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene Chloromethane (Methyl Chloride)	ug/l ug/l	70	P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
cis-1,2-Dichloroethylene	ug/l	6	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Di-Isopropyl Ether	ug/l			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	ug/l	300	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethyl Tert Butyl Ether	ug/l	150	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Freon 11 Freon 113	ug/l ug/l	150 1200	P P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Methylene Chloride	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MTBE	ug/l	13	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Styrene	ug/l	100	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tert Amyl Methyl Ether	ug/l		آبا	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TBA	ug/l	12	N) ID	3.05	3.00	NID	NE	NE	NE) III	NID) III) III	NID	NID) III	2.	2.0	NE	NE
Tetrachloroethylene (PCE) Toluene	ug/l ug/l	5 150	P P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	3.1 ND	2.9 ND	ND ND	ND ND
Total Trihalomethanes	ug/l	80	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethylene	ug/l	10	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethylene (TCE)	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl chloride (VC)	ug/l	0.5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Xylenes (Total)	ug/l	1750	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Others 1,4-Dioxane	ug/l	1	N	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.9	2.6	ND	ND
1, 1 DIOXAIIC	ug/l	6	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.35	0.41	ND	ND
Perchlorate			S		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Perchlorate Surfactants	mg/l	0.5	S	ND	ND	ND	111	112													

TABLE 3.1 CENTRAL BASIN WATER QUALITY RESULTS REGIONAL GROUNDWATER MONITORING - WATER YEAR 2021-2022 Page 24 of 38

			ype					Montel	pello #1				
Constituents	Units	MCL	MCL Type	Zor	ne 1	Zoi	ne 2	Zoi		Zoi	ne 4		ne 5
G 136	ū	Ň	MC	5/10/2022	9/15/2022	5/10/2022	9/15/2022	5/10/2022	9/15/2022	5/10/2022	9/15/2022	5/10/2022	9/15/2022
General Minerals Alkalinity	mg/l			910	890	580	570	190	190	190	180	200	200
Anion Sum	meg/l			38	38	15	15	8.2	8.2	8.6	8.6	8.1	8.2
Bicarbonate as HCO3	mg/l			1100	1100	710	690	230	230	230	220	240	240
Boron	mg/l	1	N	6.5	6.3	2.3	2.2	0.16	0.16	0.14	0.13	0.2	0.19
Bromide	ug/l			3.6	3.9	0.68	0.76	ND	ND	ND	ND	ND	ND 760
Calcium, Total Carbon Dioxide	mg/l mg/l			13.6 803	13.4 782	18.2 514	17.8 502	93.6 171	90.9 166	95.7 170	91.9 163	76.6 183	76.8 177
Carbonate as CO3	mg/l			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cation Sum	meq/l			34	35	14	14	8.1	7.9	8.6	8.3	7.8	7.8
Chloride	mg/l	500	S	710	710	130	130	64	66	70	71	70	72
Fluoride	mg/l	2	P	ND	ND	0.27	0.27	0.15	0.16	0.19	0.19	0.31	0.31
Hydroxide as OH, Calculated	mg/l			ND 720	ND 960	ND 160	ND 170	ND 27	ND 29	ND 26	ND 39	ND ND	ND
Iodide Nitrate (as NO3)	ug/l mg/l	45	P	720 ND	960 ND	160 ND	ND	27 ND	ND	36 ND	ND	ND 16	ND 17
Nitrate (as Nos)	mg/l	10	P	ND	ND	ND	ND	ND	ND	ND	ND	3.7	3.8
Nitrite, as Nitrogen	mg/l	1	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Potassium, Total	mg/l			13	11	7.6	6.8	4.3	4	4.4	4.1	3.9	3.6
Sodium, Total	mg/l			740	760	280	280	49	49	56	57	62	62
Sulfate	mg/l	500	S	ND	ND	ND 720	ND 970	120	130	140	140	91	94
Total Dissolved Solid (TDS) Nitrate + Nitrite, as Nitrogen	mg/l mg/l	1000	S	2200 ND	2100 ND	720 ND	870 ND	490 ND	480 ND	500 ND	510 ND	460 3.7	460 3.8
General Physical Properties	1118/1	10	1	ND	ND	140	ND	ND	ND	140	ND	5.1	5.0
Apparent Color	ACU	15	S	400	250	200	180	3	ND	ND	ND	ND	ND
Hardness (Total, as CaCO3)	mg/l		Ė	58.3	56.7	76	73.4	296	285	301	287	253	252
Lab pH	Units			8.27	8.3	8.19	8.25	7.89	8.07	7.87	8.04	7.56	7.8
Langelier Index - 25 degree	None			0.698	0.719	0.703	0.722	0.673	0.842	0.66	0.787	0.285	0.526
Odor	TON	3	S	12	2	4	ND	4	ND	2	ND	ND	ND
Specific Conductance Turbidity	umho/cn NTU	1600	S	920 ND	3800 0.2	480 ND	1400 0.15	740 0.1	760 0.2	780 ND	810 0.15	740 ND	760 0.2
Metals	NIU	3	3	ND	0.2	ND	0.13	0.1	0.2	ND	0.15	ND	0.2
Aluminum, Total	ug/l	1000	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Antimony, Total	ug/l	6	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Arsenic, Total	ug/l	10	P	3.2	3.2	ND	ND	ND	ND	1.8	1.9	1.5	1.4
Barium, Total	ug/l	1000	P	39	38	25	24	44	42	92	89	60	60
Beryllium, Total	ug/l	4	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cadmium, Total	ug/l	50	P P	ND 1.6	ND 1.5	ND 0.8	ND 0.85	ND ND	ND ND	ND ND	ND ND	ND ND	ND 0.29
Chromium, Total Hexavalent Chromium (Cr VI)	ug/l ug/l	10	P	ND	1.5 0.18	0.8	0.83	0.032	0.14	0.04	0.084	0.16	0.29
Copper, Total	ug/l	1300	P	1.3	0.18	0.79	0.73	ND	ND	ND	ND	0.59	ND
Iron, Total	mg/l	0.3	S	0.15	0.14	0.21	0.2	ND	ND	ND	ND	ND	ND
Lead, Total	ug/l	15	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Magnesium, Total	mg/l			5.93	5.66	7.43	7.02	15.1	14.1	15	14	15	14.5
Manganese, Total	ug/l	50	S	7.9	7.9	27	28	79	80	53	52	ND	ND
Mercury Nickel, Total	ug/l ug/l	100	P P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Selenium, Total	ug/l	50	P	ND	ND	ND	ND	ND	ND	ND	ND	2.2	2.5
Silver, Total	ug/l	100	S	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Thallium, Total	ug/l	2	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Zinc, Total	ug/l	5000	S	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Volatile Organic Compounds	/1	_		MD	MD	N/D	N/D	MD	VD	N/D	VD	ND.	MD
1,1-Dichloroethane 1,1-Dichloroethylene	ug/l ug/l	5	P P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,2-Dichloroethane	ug/l ug/l	0.5	P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Benzene	ug/l	1	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Tetrachloride	ug/l	0.5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	ug/l	70	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloromethane (Methyl Chloride)	ug/l		r	ND	0.61	ND	0.97	ND	0.95	ND	0.55	ND	ND
cis-1,2-Dichloroethylene	ug/l	6	P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Di-Isopropyl Ether Ethylbenzene	ug/l ug/l	300	P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Ethyl Tert Butyl Ether	ug/l	200	ŕ	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Freon 11	ug/l	150	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Freon 113	ug/l	1200		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene Chloride	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MTBE	ug/l	13	P	ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND
Styrene Tert Amyl Methyl Ether	ug/l ug/l	100	P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
TBA	ug/l	12	N	ND	ND	ND	ND	ND	ND	TVD	1112	TAD	ND
Tetrachloroethylene (PCE)	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	ug/l	150	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total Trihalomethanes	ug/l	80	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethylene	ug/l	10	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethylene (TCE)	ug/l	5	P	ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND
Vinyl chloride (VC) Xylenes (Total)	ug/l ug/l	0.5 1750	P P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Others	ug/I	1/30	ſ	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dioxane	ug/l	1	N	ND	ND	ND	ND	7.9	8.2	5	5.9	0.7	0.74
Perchlorate	ug/l	6	P	ND	ND	ND	ND	ND	ND	ND	ND	0.65	0.71
Surfactants	mg/l	0.5	S	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total Organic Carbon	mg/l		l -	25	27	19	18	1	0.95	0.61	0.64	0.47	0.51

TABLE 3.1 CENTRAL BASIN WATER QUALITY RESULTS REGIONAL GROUNDWATER MONITORING - WATER YEAR 2021-2022 Page 25 of 38

Constituents				ype					Montel	bello #2				
General Mattersh	Constituents	nits	CL	CL T					Zoi	ne 3				ne 5
Adadism mgl	an and Minarah	5	X	M	4/27/2022	9/13/2022	4/27/2022	9/13/2022	4/27/2022	9/13/2022	4/27/2022	9/13/2022	4/27/2022	9/13/2022
Amon Demo morpl 2		mg/l			580	1100	280	300	230	230	170	160	140	130
Bosen														5.3
Security Company Com														160
Calcium, Intel Carbon Disside mgr			1	N										0.14 ND
Carbona Danosale Danosale Carbona Danosale Danos														42
Cation Sam														124
Etheroide														ND
Flacedic mgl 2 P 0.5 0.5 0.3 0.3 0.3 0.32 0.32 0.45 0.45 0.48 0			500	c										4.9 38
Instruction as OH Calculated mg				_										0.39
Simple (a NO3)	ydroxide as OH, Calculated													ND
Signate as Nistrogen mgi 10 P ND ND ND ND ND ND ND														2.1
Surface, as Nursogen mg 1 P ND ND ND ND ND ND ND				_										14
Prosessions Total			10	_										3.2 ND
Solition Total Solition Sol			1	_										3.2
First Dissolved Solid (TDS) migal 100 8 2000 2000 660 400 380 380 330 350 350 300					750	710	100	110	77			46	50	46
Nigrate Nigrite, as Nitrogen mg 10 P ND ND ND ND ND ND ND														60
General Physical Properties														310 3.2
Appearent Color		mg/I	10	ľ	ND	ND	ND	ND	ND	ND	3.4	3.4	3	3.2
Interfaces (Total, as CaCO3)	ž i	ACU	15	S	250	350	10	30	4	4	ND	ND	ND	ND
Langelier Index - 25 degree	ardness (Total, as CaCO3)	mg/l			63	57.6	124	95.2	184	176	202	184	154	142
Oxfort														7.68
Specific Conductance			2	C										-0.006
Turbidity														ND 500
Aluminum, Total				_										0.1
Antimony, Total ug/l 10 P ND ND ND ND ND ND ND	· ·													
Assenic, Total ug/l 100 P 1 0.78 0.63 0.5 1.4 1.1 2.2 2 2 2 2 2 3 3 3 3	Ź			_										ND
Barium, Total				_										ND
Beryllium, Total				_	-									1.9 55
Cadminn Total	*			_										ND
Hexavalent Chromium (Cr VI)				P		ND								
Copper_Total				_										ND
				_										ND 0.75
Lead, Total				_										0.75 ND
Magnesium, Total														ND
Mercury	Iagnesium, Total													8.93
Nicket, Total														98
Selenium, Total				_										ND ND
Silver, Total				_										0.47
Volatile Organic Compounds														ND
Volatile Organic Compounds	hallium, Total	ug/l												ND
I.1-Dichloroethane		ug/l	5000	S	ND									
1,1-Dichloroethylene		no/1	5	D	ND									
1.2-Dichloroethane				_										ND
Carbon Tetrachloride	,			P	ND									
Chlorobenzene														ND
Chloromethane (Methyl Chloride) ug/l ug/l ND ND ND ND ND ND ND														ND ND
cis-1,2-Dichloroethylene ug/l 6 P ND N			/0	Р										ND ND
Di-Isopropyl Ether			6	P										ND
Ethyl Tert Butyl Ethet	i-Isopropyl Ether	ug/l			ND									
Freon 11			300	P										ND
Freon 113			150	Þ										ND ND
Methylene Chloride														ND ND
MTBE														ND
Tert Amyl Methyl Ether	ITBE	ug/l	13	P	ND									
TBA			100	P										ND
Tetrachloroethylene (PCE)			12	N	ND									
Toluene				_	ND									
Total Trihalomethanes	2 \ /													ND
Trichloroethylene (TCE)		ug/l	80											ND
Vinyl chloride (VC) ug/l 0.5 P ND ND ND ND ND ND ND				_										ND
Xylenes (Total) ug/l 1750 P ND 0.27 0.26 0.16														ND ND
Others 1,4-Dioxane ug/l 1 N ND ND ND ND ND 0.27 0.26 0.16				_										ND
Perchlorate			1											0.19
														0.24
Surfactants mg/l 0.5 S ND			0.5	S										ND 1

TABLE 3.1 CENTRAL BASIN WATER QUALITY RESULTS REGIONAL GROUNDWATER MONITORING - WATER YEAR 2021-2022 Page 26 of 38

			/pe		1 1190 20 01 00	Norwalk #1		
Constituents	Units	MCL	MCL Type	Zone 1	Zone 2	Zone 3	Zone 4	Zone 5
	Un	MC	MC	4/25/2022	4/25/2022	4/25/2022	4/25/2022	4/25/2022
General Minerals				***	100		100	
Alkalinity Anion Sum	mg/l			290 8.1	180 5.4	150 6.1	130 3.6	200 7.8
Bicarbonate as HCO3	meq/l mg/l			360	220	180	160	240
Boron	mg/l	1	N	0.38	0.19	0.071	0.052	0.077
Bromide	ug/l			0.25	0.22	0.38	0.12	0.41
Calcium, Total	mg/l			11	9.13	39.9	28.8	65.2
Carbon Dioxide	mg/l			262	160	136	119	184
Carbonate as CO3	mg/l			ND	4.7	ND	ND	ND
Cation Sum	meq/l			7.6	4.9	5.7	3.5	7.2
Chloride	mg/l	500		69	61	93	29	130
Fluoride	mg/l	2	P	0.44 ND	0.54 ND	0.19 ND	0.27 ND	0.27
Hydroxide as OH, Calculated Iodide	mg/l			70	88	100	31	ND 79
Nitrate (as NO3)	ug/l mg/l	45	P	ND	ND	ND	ND	ND
Nitrate (as Nos)	mg/l	10	P	ND	ND	ND	ND	ND
Nitrite, as Nitrogen	mg/l	1	P	ND	ND	ND	ND	ND
Potassium, Total	mg/l		Ė	2.7	1.5	2.9	1.8	3.6
Sodium, Total	mg/l			150	99	76	35	60
Sulfate	mg/l	500	S	13	ND	20	6.3	5.4
Total Dissolved Solid (TDS)	mg/l	1000	S	440	290	320	190	420
Nitrate + Nitrite, as Nitrogen	mg/l	10	P	ND	ND	ND	ND	ND
General Physical Properties			П					
Apparent Color	ACU	15	S	22	30	ND	3	5
Hardness (Total, as CaCO3)	mg/l		Ш	49.4	27.8	115	94.4	224
Lab pH	Units			8.04	8.35	7.93	7.94	7.64
Langelier Index - 25 degree	None			0.087	0.147	0.281	0.129	0.304
Odor	TON	3	S	32	4	4	1	4
Specific Conductance Turbidity	umho/cn NTU	1600	S	770 ND	510 0.05	590 0.05	350 0.3	760
Metals	NIU	3	2	ND	0.05	0.05	0.3	2
	/1	1000	P	18	9	ND	ND	4.5
Aluminum, Total Antimony, Total	ug/l ug/l	6	P	ND	ND	0.16	ND ND	ND
Arsenic, Total	ug/1	10	P	ND ND	0.15	5.5	15	9.6
Barium, Total	ug/l	1000	P	10	7.3	150	120	310
Beryllium, Total	ug/l	4	P	ND	ND	ND	ND	ND
Cadmium, Total	ug/l	5	P	ND	ND	ND	ND	ND
Chromium, Total	ug/l	50	P	0.28	0.2	0.13	0.19	0.22
Hexavalent Chromium (Cr VI)	ug/l	10	P	0.32	0.15	0.017	0.066	ND
Copper, Total	ug/l	1300	P	ND	ND	ND	ND	ND
Iron, Total	mg/l	0.3	S	0.0051	0.011	0.041	0.031	0.12
Lead, Total	ug/l	15	P	ND	ND	ND	ND	ND
Magnesium, Total	mg/l			5.31	1.21	3.8	5.46	14.9
Manganese, Total	ug/l	50	S	2.5	7.6	29	40	130
Mercury	ug/l	2	P	ND	ND	0.024	ND	ND
Nickel, Total	ug/l	100	P	ND	ND	ND	ND	0.33
Selenium, Total	ug/l	50	P	ND	ND	ND	ND	ND
Silver, Total	ug/l	100	S P	ND ND	ND ND	ND ND	ND ND	ND ND
Thallium, Total Zinc, Total	ug/l ug/l	5000	S	ND ND	ND ND	ND ND	ND ND	ND ND
Volatile Organic Compounds	ug/1	3000	ی	NB	ND	ND	NB	NB
1,1-Dichloroethane	ug/l	5	P	ND	ND	ND	ND	ND
1,1-Dichloroethylene	ug/l	6	P	ND	ND ND	ND	ND	ND
1,2-Dichloroethane	ug/l	0.5	P	ND	ND	ND	ND	ND
Benzene	ug/l	1	P	ND	ND	ND	ND	ND
Carbon Tetrachloride	ug/l	0.5	P	ND	ND	ND	ND	ND
Chlorobenzene	ug/l	70	P	ND	ND	ND	ND	3.7
Chloromethane (Methyl Chloride)	ug/l			ND	ND	ND	ND	ND
cis-1,2-Dichloroethylene	ug/l	6	P	ND	ND	ND	ND	0.34
Di-Isopropyl Ether	ug/l			ND	ND	ND	ND	ND
Ethylbenzene	ug/l	300	P	ND	ND	ND	ND	ND
Ethyl Tert Butyl Ether	ug/l	L	Ļ	ND	ND	ND	ND	ND
Freon 11	ug/l	150	P	ND	ND	ND	ND	ND
Freon 113	ug/l	1200		ND ND	ND ND	ND ND	ND ND	ND ND
Methylene Chloride MTBE	ug/l	5	P	ND ND	ND ND	ND ND	ND ND	ND ND
Styrene	ug/l ug/l	13	P P	ND ND	ND ND	ND ND	ND ND	ND ND
Tert Amyl Methyl Ether	ug/l	100	1	ND ND	ND ND	ND ND	ND ND	ND ND
TBA	ug/l	12	N	110	ND	ND	110	T/D
Tetrachloroethylene (PCE)	ug/l	5	P	ND	ND	ND	ND	ND
Toluene	ug/l	150	P	ND	ND	ND	ND	ND
Total Trihalomethanes	ug/l	80	P	ND	ND	ND	ND	ND
trans-1,2-Dichloroethylene	ug/l	10	P	ND	ND	ND	ND	ND
Trichloroethylene (TCE)	ug/l	5	P	ND	ND	ND	ND	ND
Vinyl chloride (VC)	ug/l	0.5	P	ND	ND	ND	ND	ND
Xylenes (Total)	ug/l	1750	_	ND	ND	ND	ND	ND
Others								
1,4-Dioxane	ug/l	1	N	ND	ND	ND	ND	0.044
Perchlorate	ug/l	6	P	ND	ND	ND	0.08	ND
Surfactants	mg/l	0.5	S	0.023	0.021	ND	0.021	0.057
Total Organic Carbon	mg/l			2.2	3.3	0.76	0.59	1.7

TABLE 3.1 CENTRAL BASIN WATER QUALITY RESULTS REGIONAL GROUNDWATER MONITORING - WATER YEAR 2021-2022

Page 27 of 38

			'pe						Norwa	alk #2					
Constituents	Units	MCL	MCL Type	Zor			ne 2	Zor	ne 3	Zor	ne 4		ne 5		ne 6
General Minerals	Ę.	M	ž	5/5/2022	9/8/2022	5/5/2022	9/8/2022	5/5/2022	9/8/2022	5/5/2022	9/8/2022	5/5/2022	9/8/2022	5/5/2022	9/8/2022
Alkalinity	mg/l			170	190	190	190	150	150	170	160	160	150	180	170
Anion Sum	meq/l			8	7.3	5.3	5.4	4.5	4.4	6.2	6.1	7.8	7.7	7.7	7.6
Bicarbonate as HCO3 Boron	mg/l mg/l	1	N	210 0.2	0.26	230 0.23	230 0.24	190 0.038	180 0.044	200 0.055	200 0.061	190 0.13	190 0.15	210 0.16	210 0.17
Bromide	ug/l	1	14	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Calcium, Total	mg/l			65.6	30.4	14.1	14	45.6	45.2	69.4	68.3	77.9	76.2	70.2	69.4
Carbon Dioxide	mg/l			159	167	169	166	136	131	153	145	146	139	164	157
Carbonate as CO3 Cation Sum	mg/l meq/l			ND 7.4	ND 6.8	ND 4.9	ND 5	ND 4.2	ND 4.3	ND 5.8	ND 5.7	ND 7.1	ND 7.2	ND 7	ND 7
Chloride	mg/l	500	S	79	71	40	42	17	17	34	34	75	75	65	63
Fluoride Hydroxide as OH, Calculated	mg/l	2	P	0.26 ND	0.31	0.41 ND	0.38	0.18 ND	0.16 ND	0.25	0.23 ND	0.24	0.22	0.35	0.32
Iodide	mg/l ug/l			31	ND 72	40	ND 46	7.7	6.9	ND ND	ND	ND 5.7	ND 5	ND ND	ND ND
Nitrate (as NO3)	mg/l	45	P	ND	ND	ND	ND	ND	ND	6.9	7.1	10	11	11	11
Nitrate as Nitrogen	mg/l	10	P	ND	ND	ND	ND	ND	ND	1.6	1.6	2.3	2.4	2.4	2.5
Nitrite, as Nitrogen Potassium, Total	mg/l mg/l	1	P	ND 4.1	ND 4.6	ND 2.9	ND 2.9	ND 2.8	ND 2.9	ND 3.5	ND 3.6	ND 4.2	ND 4.4	ND 3.9	ND 4.1
Sodium, Total	mg/l			68	110	90	92	33	34	29	30	43	46	51	52
Sulfate	mg/l	500	S	110	73	18	18	47	47	83	84	110	110	100	100
Total Dissolved Solid (TDS) Nitrate + Nitrite, as Nitrogen	mg/l mg/l	1000	S	470 ND	400 ND	300 ND	290 ND	250 ND	250 ND	360 1.6	350 1.6	460 2.3	450 2.4	450 2.4	430 2.5
General Physical Properties	mg/I	10	-	ND	ND	ND	ND	ND	ND	1.0	1.0	2.3	2.7	2.7	2.3
Apparent Color	ACU	15	S	ND	5	10	10	ND	ND	ND	ND	ND 250	ND	ND	ND
Hardness (Total, as CaCO3) Lab pH	mg/l Units			218 7.72	100 8.11	45.9 8.18	45.7 8.35	136	134 8.2	221 7.74	217 8.06	258 7.69	252 7.98	235 7.57	7.91
Langelier Index - 25 degree	None			0.305	0.424	0.187	0.356	0.43	0.625	0.375	0.664	0.325	0.579	0.214	0.528
Odor	TON	3	S	ND	ND	ND	ND	ND	4	ND	ND	ND	ND	ND	ND
Specific Conductance Turbidity	umho/cm NTU	1600	S	750 ND	710 0.2	500 0.1	520 ND	410 0.1	420 0.15	550 0.1	550 0.2	710 ND	740 ND	700 ND	710 ND
Metals	NIU	3	3	ND	0.2	0.1	ND	0.1	0.13	0.1	0.2	ND	ND	ND	ND
Aluminum, Total	ug/l	1000		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Antimony, Total	ug/l	6	P P	ND 1.6	ND 2.4	ND	ND	ND	ND ND	ND	ND 1.0	ND 2	ND 2	ND 1.3	ND 1.2
Arsenic, Total Barium, Total	ug/l ug/l	10 1000	P	1.6 58	37	ND 13	ND 13	ND 32	32	1.7 160	1.8 150	69	66	49	1.2 50
Beryllium, Total	ug/l	4	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cadmium, Total	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.04	ND	ND
Chromium, Total Hexavalent Chromium (Cr VI)	ug/l ug/l	50 10	P P	ND 0.034	ND 0.086	ND 0.14	ND 0.12	ND 0.061	ND 0.097	3.2	3.2	0.77	0.84	1.2	1.1
Copper, Total	ug/l	1300	P	0.69	1	ND	ND	ND	ND	ND	ND	ND	ND	0.53	0.59
Iron, Total	mg/l	0.3	S	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Lead, Total Magnesium, Total	ug/l mg/l	15	P	ND 13.1	ND 5.95	ND 2.62	ND 2.6	ND 5.27	ND 5.22	ND 11.6	ND 11.4	ND 15.4	ND 15.1	ND 14.5	ND 14.3
Manganese, Total	ug/l	50	S	12	8.3	19	18	22	20	ND	ND	2.5	9.4	ND	ND
Mercury	ug/l	2	P	ND	ND	ND	ND	ND	0.061	ND	ND	ND	ND	ND	ND
Nickel, Total Selenium, Total	ug/l ug/l	100 50	P P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 0.99	ND 0.93	ND 1.2	ND 1	ND 2.6	ND 2.5
Silver, Total	ug/l	100	S	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Thallium, Total	ug/l	2	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Zinc, Total Volatile Organic Compounds	ug/l	5000	S	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethylene	ug/l	6	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane Benzene	ug/l ug/l	0.5	P P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Carbon Tetrachloride	ug/l	0.5	P	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Chlorobenzene	ug/l	70	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloromethane (Methyl Chloride) cis-1,2-Dichloroethylene	ug/l ug/l	6	P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Di-Isopropyl Ether	ug/l	0	Ė	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND
Ethylbenzene	ug/l	300	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethyl Tert Butyl Ether Freon 11	ug/l ug/l	150	P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Freon 113	ug/l	1200		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND ND
Methylene Chloride	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MTBE Styrene	ug/l ug/l	13	P P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Tert Amyl Methyl Ether	ug/l	100	Г	ND ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
TBA	ug/l	12	N												
Tetrachloroethylene (PCE)	ug/l	150	P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.97	0.83	ND ND	ND ND	ND ND	ND ND
Toluene Total Trihalomethanes	ug/l ug/l	150 80	P P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
trans-1,2-Dichloroethylene	ug/l	10	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethylene (TCE)	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl chloride (VC) Xylenes (Total)	ug/l ug/l	0.5 1750	P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Others	ug/1	1,50	Ė	1,10	1,10	1,12	14D	110	1,12	1,10	1,10	140	140	1415	1417
1,4-Dioxane	ug/l	1	N	1.5	0.14	ND	ND	ND	ND	0.87	1.3	3.1	3.8	0.3	0.32
Perchlorate Surfactants	ug/l mg/l	0.5	P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	1.9 ND	ND	0.6 ND	0.69 ND	0.74 ND	0.8 ND
Total Organic Carbon	mg/l mg/l	0.3	د	0.93	1.4	1.4	1.2	0.42	0.39	ND	ND	0.47	0.41	0.4	0.39

TABLE 3.1 CENTRAL BASIN WATER QUALITY RESULTS REGIONAL GROUNDWATER MONITORING - WATER YEAR 2021-2022

Page 28 of 38

			ype						Par	amoun	t #1					
Constituents	Units	MCL	MCL Type	Zone 1		ne 2		ne 3	Zor	ne 4	Zoi	ne 5		ne 6	Zor	
General Minerals	5	Σ	Ž	8/17/2022	3/9/2022	8/17/2022	3/10/2022	8/17/2022	3/10/2022	8/17/2022	3/9/2022	8/17/2022	3/9/2022	8/17/2022	3/10/2022	8/17/2022
Alkalinity	mg/l			120	150	150	180	170	200	190	220	210	180	180	300	290
Anion Sum	meq/l			3.2	3.5	3.5	5.2	5	6.3	6.2	8	8	4.2	4.2	10	9.6
Bicarbonate as HCO3	mg/l		Ļ	150	180	180	220	210	240	230	260	260	230	220	360	350
Boron Bromide	mg/l ug/l	1	N	0.047 ND	0.055 ND	0.053 ND	0.089	0.086 ND	0.12	0.12 ND	0.14 ND	0.13 ND	0.08 ND	0.079 ND	0.092	0.087 ND
Calcium, Total	mg/l			21.8	33.1	34.3	43.6	45.6	46.9	47.8	81	84.4	48.4	50.6	97.3	102
Carbon Dioxide	mg/l			108	3.57	131	161	155	176	172	11.1	191	4.68	163	270	261
Carbonate as CO3	mg/l			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cation Sum Chloride	meq/l mg/l	500	S	3 12	3.5 6.9	3.4 6.8	5.1	4.8	6.1	5.8	7.9 52	7.6 53	7.2	4.1 7.1	9.6	9.2 55
Fluoride	mg/l	2	P	0.31	0.26	0.26	0.31	0.29	0.43	0.41	0.34	0.31	0.29	0.29	0.4	0.38
Hydroxide as OH, Calculated	mg/l			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Iodide	ug/l	4.5	P	14	6.4	4.8	24	19 ND	14	11 ND	3.7	2.6	6.9	5.6	15 ND	12
Nitrate (as NO3) Nitrate as Nitrogen	mg/l mg/l	45 10	P P	ND ND	ND ND	ND ND	ND ND	ND ND	0.071 16	ND ND	0.49	2.1 0.46	ND ND	ND ND	ND ND	ND ND
Nitrite, as Nitrogen	mg/l	1	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Potassium, Total	mg/l			1.7	2.5	2.4	3.2	3.3	3.5	3.6	4.1	4	2.7	2.7	4.7	4.6
Sodium, Total	mg/l	500	C	40	33	29	56	47	66	59	55	46	27	24	75	60
Sulfate Total Dissolved Solid (TDS)	mg/l mg/l	500 1000	S	18 190	18 240	18 200	45 310	43 290	73 360	70 360	110 490	110 720	15 260	15 560	110 570	110 550
Nitrate + Nitrite, as Nitrogen	mg/l	10	P	ND	ND	ND	ND	ND	ND	ND	0.49	0.46	ND	ND	ND	ND
General Physical Properties																
Apparent Color	ACU	15	S	ND	ND 00.2	ND 102	ND 126	ND 122	ND	ND	ND	ND 276	ND	ND	3	3
Hardness (Total, as CaCO3) Lab pH	mg/l Units			61.5 8.33	99.3 7.99	102 8.22	7.96	132 8.13	155 7.92	158 8.09	268 7.64	276 7.97	144 7.82	150 8.14	313 7.82	325 8
Langelier Index - 25 degree	None			0.362	0.284	0.543	0.431	0.601	0.455	0.611	0.424	0.708	0.352	0.617	0.802	0.991
Odor	TON	3	S	4	ND	4	1	4	1	4	ND	ND	ND	4	1	4
Specific Conductance	ımho/cn	1600		310	330	330	480	470	600	580	750	750	390	400	910	870
Turbidity	NTU	5	S	0.2	ND	0.1	0.05	0.15	0.05	0.15	ND	0.2	ND	0.15	0.15	0.4
Metals Aluminum, Total	ug/l	1000	P	ND	ND	ND	6.1	ND	4.6	ND	ND	ND	ND	ND	ND	ND
Antimony, Total	ug/l	6	P	ND	ND	ND	ND	ND	0.21	ND	ND	ND	ND	ND	ND	ND
Arsenic, Total	ug/l	10	P	7.8	9.2	9.7	43	37	5.6	5.4	6.2	5.5	130	100	9.8	9.9
Barium, Total	ug/l	1000	P	49	64	59	140	120	87	78	120	130	120	130	110	100
Beryllium, Total Cadmium, Total	ug/l ug/l	5	P P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Chromium, Total	ug/l	50	P	ND	ND	ND	0.1	ND	0.1	ND	0.24	0.21	ND	ND	0.099	ND
Hexavalent Chromium (Cr VI)	ug/l	10	P	0.11	0.024	0.042	0.044	0.033	0.021	0.063	0.13	0.16	0.034	0.041	0.0079	ND
Copper, Total	ug/l	1300		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Iron, Total	mg/l	0.3	S	ND ND	ND ND	0.035 ND	0.034	0.042 ND	0.0065	ND ND	ND 0.26	ND ND	ND ND	ND ND	0.15 ND	0.16 ND
Lead, Total Magnesium, Total	ug/l mg/l	13	Р	1.73	4.03	3.87	ND 4.2	4.53	ND 9.32	9.42	15.8	16	5.57	5.62	17.1	17.3
Manganese, Total	ug/l	50	S	16	31	34	48	63	24	29	94	92	76	79	140	150
Mercury	ug/l	2	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Nickel, Total	ug/l	100	P	ND	ND	ND	0.19	ND	0.16	ND	ND	ND	ND	ND	0.41	ND
Selenium, Total Silver, Total	ug/l ug/l	50 100	P	ND ND	ND ND	ND ND	ND ND	ND ND	0.36 ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Thallium, Total	ug/l	2	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Zinc, Total	ug/l	5000	S	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Volatile Organic Compounds																
1,1-Dichloroethane 1,1-Dichloroethylene	ug/l ug/l	5	P P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,2-Dichloroethane	ug/l	0.5	P	ND ND	ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND
Benzene	ug/l	1	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Tetrachloride	ug/l	0.5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene Chloromethone (Methyl Chloride)	ug/l	70	P	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND
Chloromethane (Methyl Chloride) cis-1,2-Dichloroethylene	ug/l ug/l	6	P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Di-Isopropyl Ether	ug/l		Ĺ	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	ug/l	300	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethyl Tert Butyl Ether	ug/l	150	D	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND
Freon 11 Freon 113	ug/l ug/l	150 1200		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Methylene Chloride	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MTBE	ug/l	13	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Styrene	ug/l	100	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tert Amyl Methyl Ether TBA	ug/l ug/l	12	N	ND	ND ND	ND	ND ND	ND	ND ND	ND	ND ND	ND	ND ND	ND	ND ND	ND
Tetrachloroethylene (PCE)	ug/l	5	P	ND	ND	ND	ND ND	ND	ND	ND	ND ND	ND	ND ND	ND	ND	ND
Toluene	ug/l	150	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total Trihalomethanes	ug/l	80	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethylene	ug/l	10	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethylene (TCE) Vinyl chloride (VC)	ug/l ug/l	0.5	P P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Xylenes (Total)	ug/l	1750	_	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Others																
1,4-Dioxane	ug/l	1	N	ND	ND	ND	ND	ND	0.06	ND	2.5	2.8	ND	ND	0.076	0.081
Perchlorate Surfactorite	ug/l	0.5	P	ND ND	ND	ND ND	ND 0.018	ND ND	0.077	ND ND	0.11 ND	0.11 ND	ND ND	ND ND	ND 0.023	ND
Surfactants Total Organic Carbon	mg/l mg/l	0.5	S	ND 0.81	ND 0.73	ND 0.51	0.018	ND 0.78	0.021	ND 0.98	ND 0.83	ND 0.75	ND 0.61	ND 0.48	0.023 4.6	ND 3
20m2 Organic Curbon	1118/1	l	I	0.01	0.73	0.31	1./	0.70	1.J	0.70	0.00	0.13	0.01	0.70	1.0	J

TABLE 3.1 CENTRAL BASIN WATER QUALITY RESULTS REGIONAL GROUNDWATER MONITORING - WATER YEAR 2021-2022 Page 29 of 38

			ē				D: #1			
Constituents	ıts	T	MCL Type	Zone 1	701	ne 2	Pico #1	ne 3	70	ne 4
	Units	MCL	MCI	3/3/2022	3/3/2022	8/24/2022	3/3/2022	8/24/2022	3/3/2022	8/24/2022
General Minerals Alkalinity	mg/l			290	160	160	200	190	240	240
Anion Sum	meq/l			6	4.6	4.5	9.1	9.1	11	11
Bicarbonate as HCO3	mg/l			360	190	190	240	230	290	290
Boron	mg/l	1	N	0.61	0.069	0.071	0.11	0.11	0.25	0.26
Bromide	ug/l			ND	ND	ND	ND	ND	ND	ND
Calcium, Total	mg/l			8.38	54.9	53.7	109	111	107	106
Carbon Dioxide	mg/l			264	149	140	193	175	245	221
Carbonate as CO3	mg/l			ND	ND	ND 4.2	ND	ND	ND	ND
Cation Sum Chloride	meq/l	500	c	5.6 3.3	4.4	4.3	8.5 74	8.7 79	11 110	11 110
Fluoride	mg/l mg/l	2	S	0.22	0.25	0.26	0.27	0.28	0.23	0.23
Hydroxide as OH, Calculated	mg/l		1	ND	ND	ND	ND	ND	ND	ND
Iodide	ug/l			5.8	2.6	2.5	7.5	6.9	ND	ND
Nitrate (as NO3)	mg/l	45	Р	ND	ND	ND	ND	ND	19	19
Nitrate as Nitrogen	mg/l	10	P	ND	ND	ND	ND	ND	4.2	4.3
Nitrite, as Nitrogen	mg/l	1	P	ND	ND	ND	ND	ND	ND	ND
Potassium, Total	mg/l			3.6	2.6	2.7	4	4.2	5.6	6.1
Sodium, Total	mg/l			110	20	20	35	35	91	91
Sulfate	mg/l	500	S	ND	52	49	140	140	150	150
Total Dissolved Solid (TDS)	mg/l	1000		360	280	280	550	570	680	660
Nitrate + Nitrite, as Nitrogen	mg/l	10	P	ND	ND	ND	ND	ND	4.2	4.3
General Physical Properties	<u> </u>		Ļ							
Apparent Color	ACU	15	S	35	5	4	5	12	ND	ND
Hardness (Total, as CaCO3)	mg/l		Ш	32.9	176	172	346	352	347	346
Lab pH	Units			7.98	7.51	7.94	7.33	7.79	7.16	7.66
Langelier Index - 25 degree	None	-		-0.071	0.04	0.46	0.19	0.631	0.067	0.566
Odor	TON	1600	S	ND 490	ND	ND 410	ND 730	ND 820	ND 020	ND
Specific Conductance Turbidity	umho/cm NTU	1600	S	490 0.65	380	410 0.7	730	820 3.2	920 ND	1100 0.2
Metals	NIU	3	2	0.65	I	0.7	3.1	3.2	ND	0.2
Aluminum, Total	/1	1000	D	ND	ND	ND	ND	ND	ND	MD
	ug/l	1000	P P			ND ND	ND	ND	ND ND	ND ND
Antimony, Total Arsenic, Total	ug/l	10	P	ND 4.5	ND 0.49	0.51	ND 0.57	ND 0.52	ND 2.3	ND 2.4
Barium, Total	ug/l	1000		16	70	69	74	74	71	73
Beryllium, Total	ug/l ug/l	4	P	ND	ND	ND	ND	ND	ND	ND
Cadmium, Total	ug/l	5	P	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Chromium, Total	ug/l	50	P	ND	ND	ND	ND	ND	0.82	0.85
Hexavalent Chromium (Cr VI)	ug/l	10	P	0.039	ND	ND	ND	ND	0.76	0.73
Copper, Total	ug/l	1300	_	ND	ND	ND	ND	ND	ND	1.2
Iron, Total	mg/l	0.3	S	0.083	0.26	0.24	0.45	0.46	ND	ND
Lead, Total	ug/l	15	P	ND	ND	ND	ND	ND	ND	ND
Magnesium, Total	mg/l			2.91	9.38	9.12	17.8	18.1	19.7	19.7
Manganese, Total	ug/l	50	S	31	19	19	16	15	ND	ND
Mercury	ug/l	2	P	ND	ND	ND	ND	ND	ND	ND
Nickel, Total	ug/l	100	P	ND	ND	ND	ND	ND	ND	ND
Selenium, Total	ug/l	50	P	ND	ND	ND	ND	ND	2.9	2.9
Silver, Total	ug/l	100	S	ND	ND	ND	ND	ND	ND	ND
Thallium, Total	ug/l	2	P	ND	ND	ND	ND	ND	ND	ND
Zinc, Total	ug/l	5000	S	ND	ND	ND	ND	ND	ND	ND
Volatile Organic Compounds										
1,1-Dichloroethane	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethylene	ug/l	6	P	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	ug/l	0.5	P	ND	ND	ND	ND	ND	ND	ND
Benzene	ug/l	1	P	ND	ND	ND	ND	ND	ND	ND
Carbon Tetrachloride Chlorobenzene	ug/l	0.5	P P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Chlorobenzene Chloromethane (Methyl Chloride)	ug/l	70	ľ	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
cis-1,2-Dichloroethylene	ug/l ug/l	6	P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Di-Isopropyl Ether	ug/l	U	ſ	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Ethylbenzene	ug/l	300	P	ND	ND ND	ND ND	ND ND	ND ND	ND	ND
Ethyl Tert Butyl Ether	ug/l	500	_	ND	ND	ND	ND	ND	ND ND	ND
Freon 11	ug/l	150	P	ND	ND	ND	ND	ND	ND	ND
Freon 113	ug/l	1200		ND	ND	ND	ND	ND	ND	ND
Methylene Chloride	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND
MTBE	ug/l	13	P	ND	ND	ND	ND	ND	ND	ND
Styrene	ug/l	100	P	ND	ND	ND	ND	ND	ND	ND
Tert Amyl Methyl Ether	ug/l			ND	ND	ND	ND	ND	ND	ND
TBA	ug/l	12	N							
Tetrachloroethylene (PCE)	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND
Toluene	ug/l	150	P	ND	ND	ND	ND	ND	ND	ND
Total Trihalomethanes	ug/l	80	P	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethylene	ug/l	10	P	ND	ND	ND	ND	ND	ND	ND
Trichloroethylene (TCE)	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND
Vinyl chloride (VC)	ug/l	0.5	P	ND	ND	ND	ND	ND	ND	ND
Xylenes (Total)	ug/l	1750	P	ND	ND	ND	ND	ND	ND	ND
Others			لــا							
1,4-Dioxane	ug/l	1	N	ND	0.19	0.16	0.6	0.56	0.33	0.31
Perchlorate	ug/l	6	P	ND	ND	ND	ND	ND	0.86	0.93
Surfactants	mg/l	0.5	S	ND	ND	ND	ND	ND	ND	ND
Total Organic Carbon	mg/l	1	i i	2.6	ND	ND	0.51	0.36	0.41	0.43

TABLE 3.1 CENTRAL BASIN WATER QUALITY RESULTS REGIONAL GROUNDWATER MONITORING - WATER YEAR 2021-2022

Page 30 of 38

			'pe						Pice	n #2					
Constituents	Units	MCL	MCL Type	Zor			ne 2		ne 3	Zor			ne 5		ne 6
General Minerals	ū	Σ	M	5/5/2022	8/29/2022	5/5/2022	8/29/2022	5/5/2022	8/29/2022	5/5/2022	8/29/2022	5/5/2022	8/29/2022	5/5/2022	8/29/2022
Alkalinity	mg/l			210	200	200	200	190	190	140	130	120	120	130	130
Anion Sum	meq/l			9.1	8.9	10	10	9.2	9.1	8.1	7.5	7.6	7.6	8.6	8.2
Bicarbonate as HCO3 Boron	mg/l mg/l	1	N	250 0.057	240 0.059	250 0.15	240 0.16	230 0.16	230 0.16	170 0.21	160 0.19	150 0.19	150 0.19	160 0.21	160 0.26
Bromide	ug/l	1	14	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Calcium, Total	mg/l			116	118	116	121	101	102	60.3	60	46.8	49.9	59.2	52.7
Carbon Dioxide	mg/l			193	185	192	184	179	175	137	126	123	121	139	134
Carbonate as CO3 Cation Sum	mg/l meq/l			ND 8.6	ND 8.8	ND 9.5	ND 9.9	ND 8.6	ND 8.8	ND 7.4	ND 7.1	ND 6.8	ND 7.1	ND 7.9	ND 7.7
Chloride	mg/l	500	S	69	67	110	110	91	90	110	98	110	110	120	110
Fluoride	mg/l	2	P	0.2	0.2	0.23	0.22	0.28	0.27	0.29	0.28	0.28	0.27	0.21	0.22
Hydroxide as OH, Calculated	mg/l			ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND	ND	ND	ND ND	ND ND
Nitrate (as NO3)	ug/l mg/l	45	P	ND 15	ND 15	16	ND 16	ND 18	17	ND 20	ND 16	ND 21	ND 18	18	20
Nitrate as Nitrogen	mg/l	10	P	3.4	3.3	3.7	3.5	4	3.9	4.6	3.7	4.7	4.1	4.1	4.5
Nitrite, as Nitrogen	mg/l	1	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Potassium, Total Sodium, Total	mg/l mg/l			3.9 24	4.1 25	4.2 39	4.5 42	4.6	4.7 45	4.6 74	4.9 69	5.1 74	5.4 77	9.7 75	10 83
Sulfate	mg/l	500	S	130	130	140	140	120	120	94	87	86	89	110	100
Total Dissolved Solid (TDS)	mg/l	1000	S	550	590	610	680	530	560	460	470	430	540	510	480
Nitrate + Nitrite, as Nitrogen	mg/l	10	P	3.4	3.3	3.7	3.5	4	3.9	4.6	3.7	4.7	4.1	4.1	4.5
General Physical Properties Apparent Color	ACU	15	S	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hardness (Total, as CaCO3)	mg/l	13	3	373	380	386	400	332	336	203	202	171	183	218	193
Lab pH	Units			7.53	7.65	7.5	7.62	7.55	7.66	7.35	7.45	7.19	7.28	7	7.14
Langelier Index - 25 degree	None	2	-	0.438	0.536	0.375	0.501	0.358	0.466	-0.184	-0.12	-0.514	-0.42	-0.584	-0.489
Odor Specific Conductance	TON amho/cn	1600	S	ND 840	ND 870	ND 960	ND 1000	ND 870	ND 900	ND 800	ND 790	ND 760	ND 800	ND 860	ND 850
Turbidity	NTU	5	S	ND	0.1	ND	0.1	ND	0.15	0.2	0.15	ND	ND	0.2	0.2
Metals															
Aluminum, Total	ug/l	1000	P P	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND 0.53
Antimony, Total Arsenic, Total	ug/l ug/l	10	P	ND 1.4	1.3	1.9	ND 1.9	1.6	1.5	2.4	ND 2.2	ND 0.77	0.74	6.1	6.4
Barium, Total	ug/l	1000	P	100	100	94	97	88	89	63	65	86	89	190	170
Beryllium, Total	ug/l	4	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cadmium, Total Chromium, Total	ug/l ug/l	50	P	ND 1.1	ND 1.2	ND 0.89	ND 1	ND 1.4	ND 1.5	ND 0.63	ND 0.64	ND 0.6	ND 0.6	ND 0.29	ND 0.42
Hexavalent Chromium (Cr VI)	ug/l	10	P	1.2	1.3	0.89	1	1.4	1.6	0.67	0.72	0.61	0.65	0.29	0.42
Copper, Total	ug/l	1300	P	0.84	1.2	0.8	1.1	0.66	0.89	0.96	1.3	1.2	1.5	3.9	3
Iron, Total	mg/l	0.3	S	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Lead, Total Magnesium, Total	ug/l mg/l	15	P	ND 20.5	ND 20.9	ND 23	ND 24	ND 19.7	ND 20	ND 12.7	ND 12.7	ND 13.2	ND 14.2	ND 17.1	ND 15
Manganese, Total	ug/l	50	S	ND	ND	3.1	ND	ND	ND	ND	ND	40	44	ND	ND
Mercury	ug/l	2	P	ND	ND	ND	ND	ND	ND	ND	0.055	ND	ND	ND	ND
Nickel, Total Selenium, Total	ug/l	100 50	P P	ND	ND 1.1	ND 1.2	ND 1.2	ND 0.99	ND 0.96	0.81	ND 0.95	2 2	2.6	6.9 ND	0.73
Silver, Total	ug/l ug/l	100	S	1.1 ND	ND	ND	ND	0.99 ND	0.96 ND	ND	0.93 ND	ND	ND	ND	ND
Thallium, Total	ug/l	2	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Zinc, Total	ug/l	5000	S	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Volatile Organic Compounds 1,1-Dichloroethane	ug/l	5	Р	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethylene	ug/l	6	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	ug/l	0.5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzene Godon Tetrodalorida	ug/l	1	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Tetrachloride Chlorobenzene	ug/l ug/l	0.5 70	P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Chloromethane (Methyl Chloride)	ug/l	, 0	Ė	ND	ND	ND	ND	ND	ND	ND	0.51	ND	ND	ND	ND
cis-1,2-Dichloroethylene	ug/l	6	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Di-Isopropyl Ether	ug/l	200	D	ND	ND ND	ND	ND ND	ND	ND ND						
Ethylbenzene Ethyl Tert Butyl Ether	ug/l ug/l	300	P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Freon 11	ug/l	150	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Freon 113	ug/l	1200		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene Chloride MTBE	ug/l	5 13	P P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Styrene	ug/l ug/l	100	P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Tert Amyl Methyl Ether	ug/l			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TBA	ug/l	12	N												
Tetrachloroethylene (PCE) Toluene	ug/l ug/l	5 150	P P	0.85 ND	0.65 ND	0.76 ND	0.59 ND	1.8 ND	1.7 ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Total Trihalomethanes	ug/l	80	P	ND ND	ND ND	2	1.5	1.9	1.6	7	4.3	0.77	ND ND	14	6.7
trans-1,2-Dichloroethylene	ug/l	10	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethylene (TCE)	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl chloride (VC)	ug/l	0.5	P P	ND	ND	ND	ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND	ND
Xylenes (Total) Others	ug/l	1750	ľ	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dioxane	ug/l	1	N	2.7	2.8	0.73	0.93	1.6	1.7	0.49	0.58	0.49	0.68	0.91	0.49
Perchlorate	ug/l	6	P	1.3	1.4	0.49	0.5	0.82	0.79	0.28	0.45	0.46	0.61	0.23	0.48
Surfactants Total Organia Carbon	mg/l	0.5	S	ND 0.47	ND 0.24	ND 0.58	ND 0.45	ND 0.26	ND 0.35	ND 0.58	ND 0.54	ND 0.61	ND 0.63	ND 1.2	ND 0.97
Total Organic Carbon	mg/l	1		0.47	0.34	0.58	0.45	0.36	0.35	0.58	0.54	0.61	0.63	1.2	0.97

TABLE 3.1 CENTRAL BASIN WATER QUALITY RESULTS REGIONAL GROUNDWATER MONITORING - WATER YEAR 2021-2022 Page 31 of 38

			ype						Rio Ho	ndo #1					
Constituents	Units	MCL	MCL Type	Zor			ne 2	Zor	ne 3	Zor	ne 4		ne 5		ne 6
Community Community	Ľ.	M	M	4/28/2022	9/13/2022	4/28/2022	9/13/2022	4/28/2022	9/13/2022	4/28/2022	9/13/2022	4/28/2022	9/13/2022	4/28/2022	9/13/2022
General Minerals Alkalinity	mg/l			160	140	180	160	200	190	120	110	120	110	130	120
Anion Sum	meq/l			4.7	4.5	7.1	6.9	8.8	8.7	4.8	4.6	5	5	6	6.3
Bicarbonate as HCO3	mg/l			190	180	220	200	250	230	140	130	140	130	150	140
Boron	mg/l	1	N	0.067	0.068	0.055	0.056	0.16 ND	0.16 ND	0.14 ND	0.14 ND	0.14 ND	0.14	0.12 ND	0.13 ND
Bromide Calcium, Total	ug/l mg/l			ND 39.5	ND 40.4	ND 85	ND 85.5	93.3	94.6	36.4	36.2	37.3	ND 40.2	46.2	51.4
Carbon Dioxide	mg/l			140	129	165	148	188	171	111	97.9	114	101	129	114
Carbonate as CO3	mg/l			ND											
Cation Sum	meq/l			4.3	4.4	6.6	6.6	8.2	8.2	4.3	4.3	4.4	4.6	5.3	5.8
Chloride	mg/l	500	S	19	19	0.2	45	79	80	32	32	41	47 0.27	68	76
Fluoride Hydroxide as OH, Calculated	mg/l mg/l	2	P	0.23 ND	0.23 ND	ND	0.19 ND	0.26 ND	0.25 ND	0.32 ND	0.32 ND	0.28 ND	ND	0.27 ND	0.27 ND
Iodide	ug/l			23	22	5.3	5	ND							
Nitrate (as NO3)	mg/l	45	P	ND	ND	ND	ND	11	11	6.9	7.3	9.7	11	14	16
Nitrate as Nitrogen	mg/l	10	P	ND	ND	ND	ND	2.4	2.5	1.6	1.7	2.2	2.5	3.1	3.5
Nitrite, as Nitrogen	mg/l	1	P	ND 2	ND 2.7	ND 2.5	ND 2.2	ND 4.2	ND	ND 2.1	ND 2.0	ND 2.2	ND 2.1	ND 4.2	ND 4.2
Potassium, Total Sodium, Total	mg/l mg/l			3	2.7 37	3.5 24	3.2	4.3	4.1	3.1 43	2.8 42	3.2 42	3.1 43	4.2	4.2
Sulfate	mg/l	500	S	50	52	110	110	110	120	67	67	63	63	63	72
Total Dissolved Solid (TDS)	mg/l	1000	S	260	260	410	420	490	500	260	270	250	290	310	360
Nitrate + Nitrite, as Nitrogen	mg/l	10	P	ND	ND	ND	ND	2.4	2.5	1.6	1.7	2.2	2.5	3.1	3.5
General Physical Properties	ACTI	15	0	NP	ND	ND	ND	ND	MP	ND	NID	VID	ND	ND	MP
Apparent Color Hardness (Total, as CaCO3)	ACU mg/l	15	S	ND 130	ND 133	ND 272	ND 274	ND 300	ND 304	ND 119	ND 119	ND 125	ND 134	ND 164	ND 183
Lab pH	Units			7.91	8.11	7.67	7.9	7.59	7.85	7.5	7.73	7.37	7.54	7.13	7.41
Langelier Index - 25 degree	None			0.303	0.454	0.406	0.585	0.394	0.635	-0.267	-0.081	-0.384	-0.231	-0.514	-0.236
Odor	TON	3	S	ND											
Specific Conductance	umho/cn	1600	S	420	420	630	630	790	800	440	440	460	470	560	590
Turbidity Metals	NTU	5	S	0.15	0.2	0.15	0.15	ND	0.1	ND	ND	0.1	0.45	0.2	0.25
Aluminum, Total	ug/l	1000	P	ND											
Antimony, Total	ug/l	6	P	ND											
Arsenic, Total	ug/l	10	P	ND	ND	0.7	0.69	1.9	1.9	2.6	2.6	1.6	1.5	0.95	0.87
Barium, Total	ug/l	1000	P	19	18	49	48	120	120	49	48	52	54	100	110
Beryllium, Total	ug/l	5	P	ND ND	ND	ND ND	ND	ND ND							
Cadmium, Total Chromium, Total	ug/l ug/l	50	P P	ND ND	ND 0.22	0.53	ND ND	0.64	0.65	0.85	0.86	0.83	0.85	ND 0.68	0.72
Hexavalent Chromium (Cr VI)	ug/l	10	P	0.065	0.16	0.036	0.07	0.67	0.79	0.83	0.99	0.84	0.95	0.7	0.72
Copper, Total	ug/l	1300		ND	ND	ND	ND	0.52	0.63	ND	ND	ND	0.54	0.61	0.72
Iron, Total	mg/l	0.3	S	ND	ND	0.073	0.067	ND							
Lead, Total	ug/l	15	P	ND	ND 7.04	ND	ND	ND 162	ND	ND	ND	ND	ND 0.27	ND	ND
Magnesium, Total Manganese, Total	mg/l ug/l	50	S	7.63	7.84	14.6 27	14.7 27	16.2 ND	16.5 ND	6.88 ND	6.87 ND	7.67 ND	8.27 ND	11.9 ND	13.2 ND
Mercury	ug/l	2	P	ND											
Nickel, Total	ug/l	100	P	ND											
Selenium, Total	ug/l	50	P	ND	ND	ND	ND	0.74	0.7	0.69	0.71	1	0.96	1.1	1.1
Silver, Total	ug/l	100	S	ND											
Thallium, Total Zinc, Total	ug/l ug/l	2 5000	P	ND ND											
Volatile Organic Compounds	ug/1	3000	5	ND											
1,1-Dichloroethane	ug/l	5	P	ND											
1,1-Dichloroethylene	ug/l	6	P	ND											
1,2-Dichloroethane	ug/l	0.5	P	ND											
Benzene Carbon Tetrachloride	ug/l ug/l	0.5	P P	ND ND											
Chlorobenzene	ug/l	70	P	ND											
Chloromethane (Methyl Chloride)	ug/l		Ė	ND	ND	ND	0.53	ND	0.5	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethylene	ug/l	6	P	ND											
Di-Isopropyl Ether	ug/l	200		ND											
Ethylbenzene Ethyl Tert Butyl Ether	ug/l ug/l	300	P	ND ND											
Freon 11	ug/l ug/l	150	P	ND	ND ND	ND									
Freon 113	ug/l	1200	_	ND											
Methylene Chloride	ug/l	5	P	ND											
MTBE	ug/l	13	P	ND											
Styrene Tert Amyl Methyl Ether	ug/l	100	P	ND ND											
Tert Amyl Methyl Ether TBA	ug/l ug/l	12	N	ND											
Tetrachloroethylene (PCE)	ug/l	5	P	ND											
Toluene	ug/l	150	P	ND											
Total Trihalomethanes	ug/l	80	P	ND	ND	ND	ND	ND	ND	0.7	0.95	1.9	3.4	10	9.6
trans-1,2-Dichloroethylene	ug/l	10	P	ND											
Trichloroethylene (TCE) Vinyl chloride (VC)	ug/l ug/l	0.5	P P	ND ND											
Xylenes (Total)	ug/l ug/l	1750		ND ND											
Others	ug/1	.,50		1112	110	110	110	110	THE	110	110	1,12	110	110	THE
1,4-Dioxane	ug/l	1	N	ND	ND	4.5	6.3	1.1	1.3	0.15	0.18	0.18	0.24	0.26	0.36
Perchlorate	ug/l	6	P	ND	ND	ND	ND	0.37	0.27	0.43	0.32	0.51	0.4	0.6	0.54
Surfactants Total Organia Carbon	mg/l	0.5	S	ND 0.27	ND 0.35	ND 0.22	ND ND	ND 0.42	ND 0.21	ND 0.36	ND 0.31	ND 0.33	ND ND	ND 0.37	ND 0.36
Total Organic Carbon	mg/l	l	<u> </u>	0.37	0.35	0.33	ND	0.42	0.31	0.36	0.31	0.33	ND	0.37	0.36

TABLE 3.1 CENTRAL BASIN WATER QUALITY RESULTS REGIONAL GROUNDWATER MONITORING - WATER YEAR 2021-2022 Page 32 of 38

			be					36 32 01		Seal Bo	each #1	1					
Constituents	Units	MCL	MCL Type	Zoi			ne 2		ne 3	Zor	ne 4	Zoı	ne 5		ne 6		ne 7
General Minerals	n	N	Σ	4/13/2022	8/16/2022	4/13/2022	8/16/2022	4/13/2022	8/16/2022	4/13/2022	8/16/2022	4/13/2022	8/16/2022	4/13/2022	8/16/2022	4/13/2022	8/16/2022
Alkalinity	mg/l			240	240	170	160	160	150	190	180	72	68	130	120	230	210
Anion Sum	meq/l			5.4	5.3	3.8	3.7	3.8	3.5	4.3	4.2	10	10	8.8	9	31	34
Bicarbonate as HCO3	mg/l			290	270	180	170	170	160	230	210	88	83	150	140	280	250
Boron	mg/l	1	N	0.25 ND	0.24 ND	0.15	0.15	0.2 ND	0.19	0.24	0.22	0.061	0.06	0.17	0.16	0.17	0.16
Bromide Calcium, Total	ug/l mg/l			5.9	5.67	ND 3.7	ND 3.67	3.69	ND 3.64	ND 5.8	ND 5.43	0.57 64.3	ND 68	ND 79.1	ND 81.7	2.2 301	ND 289
Carbon Dioxide	mg/l			210	206	145	139	141	132	163	159	64.3	60.7	112	105	210	186
Carbonate as CO3	mg/l			ND	18	24	23	22	22	ND	14	ND	ND	ND	ND	ND	ND
Cation Sum	meq/l			5.1	4.8	3.5	3.4	3.4	3.3	4.1	3.8	9.5	9.9	8.3	8.4	32	31
Chloride	mg/l	500	S	19	19	16	16	15	15	19	19	270	290	90	99	770	900
Fluoride	mg/l	2	P	0.34	0.34	0.45	0.46	0.52	0.52	0.68	0.7	0.21	0.2	0.26	0.27	0.25	ND
Hydroxide as OH, Calculated	mg/l			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Iodide Nitrate (as NO3)	ug/l	45	P	46 ND	38 ND	20 ND	17 ND	15 ND	ND	28 ND	22 ND	6.3 ND	5.2 ND	7.7 ND	6.3 ND	130 ND	110 ND
Nitrate (as NO3)	mg/l mg/l	10	P	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Nitrite, as Nitrogen	mg/l	1	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Potassium, Total	mg/l			1.2	0.75	0.91	0.58	0.84	0.53	1	0.8	2.9	2.7	2.9	2.7	8.3	7.6
Sodium, Total	mg/l			110	100	76	74	72	70	86	81	140	140	72	72	260	250
Sulfate	mg/l	500	S	ND	ND	ND	ND	ND	ND	ND	ND	44	42	180	180	240	240
Total Dissolved Solid (TDS)	mg/l	1000	S	360	320	300	220	230	220 ND	260	260	670	670	520	550	2500	2000
Nitrate + Nitrite, as Nitrogen	mg/l	10	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
General Physical Properties Apparent Color	ACU	15	S	250	250	75	75	75	50	150	150	ND	ND	ND	ND	3	3
Hardness (Total, as CaCO3)	mg/l	13	٥	14.7	14.2	9.24	9.17	9.22	9.1	17.1	15.7	176	185	254	260	1020	973
Lab pH	Units			8.56	8.66	8.79	8.9	8.79	8.88	8.5	8.6	8.02	8.06	7.96	8.08	7.6	7.86
Langelier Index - 25 degree	None			0.272	0.364	0.163	0.267	0.157	0.215	0.132	0.179	0.184	0.223	0.498	0.591	0.758	0.994
Odor	TON	3	S	ND	ND	ND	ND	ND	ND	ND	ND	ND	4	ND	ND	ND	ND
Specific Conductance	umho/cm	1600	S	490	480	350	340	340	330	400	380	1100	1100	850	840	3700	3500
Turbidity	NTU	5	S	0.15	0.15	0.1	0.15	ND	0.1	0.35	0.3	0.5	1.3	ND	ND	0.75	0.85
Metals	/1	1000	n	30	2.1	22	22	26	20	NID	NID	ND	NID	ND	ND	NID	NID
Aluminum, Total Antimony, Total	ug/l ug/l	1000	P P	ND	31 ND	33 ND	33 ND	26 ND	28 ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Arsenic, Total	ug/l	10	P	0.62	0.61	ND	ND	ND	ND	0.48	0.49	0.42	0.41	0.45	0.46	2.2	2.1
Barium, Total	ug/l	1000	P	8.6	7.8	3.9	3.9	3.5	3.4	4.8	4.7	65	67	130	140	94	92
Beryllium, Total	ug/l	4	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cadmium, Total	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chromium, Total	ug/l	50	P	0.89	0.88	0.54	0.56	0.38	0.39	0.89	0.88	ND	ND	ND	ND	ND	ND
Hexavalent Chromium (Cr VI)	ug/l	10	P	0.24	0.26	0.19	0.27	0.16	0.26	0.14	0.25	ND	0.092	ND	0.025	ND	ND
Copper, Total Iron, Total	ug/l	0.3	P	0.79	0.83	0.52 ND	0.6 ND	ND ND	ND ND	0.72	0.68	ND ND	ND ND	ND 0.035	ND 0.037	ND 0.23	ND 0.2
Lead, Total	mg/l ug/l	15	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Magnesium, Total	mg/l	13	•	ND	ND	ND	ND	ND	ND	0.633	0.523	3.71	3.72	13.7	13.7	63.9	60.9
Manganese, Total	ug/l	50	S	6.3	6	3.5	3.5	2.2	2.2	7.4	7.2	24	24	110	120	690	670
Mercury	ug/l	2	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Nickel, Total	ug/l	100	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Selenium, Total	ug/l	50	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Silver, Total Thallium, Total	ug/l	100	S P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Zinc, Total	ug/l ug/l	5000	S	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Volatile Organic Compounds	ug/1	3000	b	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethylene	ug/l	6	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	ug/l	0.5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzene	ug/l	1	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Tetrachloride	ug/l	70	P P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Chlorobenzene Chloromethane (Methyl Chloride)	ug/l ug/l	/0	ľ	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
cis-1,2-Dichloroethylene	ug/l	6	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Di-Isopropyl Ether	ug/l	Ť	Ė	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	ug/l	300	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethyl Tert Butyl Ethei	ug/l			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Freon 11	ug/l	150	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Freon 113	ug/l	1200		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene Chloride MTBE	ug/l ug/l	5	P P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Styrene	ug/l	100	P	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND ND	ND ND
Tert Amyl Methyl Ether	ug/l		Ė	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TBA	ug/l	12	N														
Tetrachloroethylene (PCE)	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	ug/l	150	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total Trihalomethanes	ug/l	80	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethylene	ug/l	10	P	ND	ND	ND	ND	ND	ND	ND ND	ND ND	ND	ND	ND	ND ND	ND	ND
Trichloroethylene (TCE) Vinyl chloride (VC)	ug/l ug/l	5 0.5	P P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
		0.5	r	ND				ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	_	1750	р	ND	ND												ND
Xylenes (Total)	ug/l	1750	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	ug/l	1750	P	ND ND	ND ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Xylenes (Total) Others	_	1750 1 6															ND ND
Xylenes (Total) Others 1,4-Dioxane	ug/l ug/l	1	N	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	

TABLE 3.1 CENTRAL BASIN WATER QUALITY RESULTS REGIONAL GROUNDWATER MONITORING - WATER YEAR 2021-2022 Page 33 of 38

			ype					South (Gate #1				
Constituents	Units	MCL	MCL Type	Zor			ne 2	Zor	ne 3	Zor			ne 5
General Minerals	n	2	Σ	5/16/2022	9/20/2022	5/16/2022	9/20/2022	5/16/2022	9/20/2022	5/16/2022	9/20/2022	5/16/2022	9/20/2022
Alkalinity	mg/l			170	170	160	140	140	150	180	180	220	210
Anion Sum	meq/l			5.3	5.3	6.8	6.6	6.6	6.8	8.1	8.2	9.7	9.6
Bicarbonate as HCO3	mg/l	,	N	210 0.12	210 0.11	190 0.13	170 0.14	170 0.15	190 0.12	230 0.17	230 0.17	260 0.14	260 0.14
Boron Bromide	mg/l ug/l	1	IN	ND	ND	ND	0.14 ND	ND	ND	ND	ND	0.14 ND	0.14 ND
Calcium, Total	mg/l			51	50.7	72.1	66.4	65.4	72.8	83.2	84.6	97.2	97.3
Carbon Dioxide	mg/l			155	149	144	124	130	138	172	167	200	192
Carbonate as CO3	mg/l			ND									
Cation Sum	meq/l			5.2	5.2	6.6	6.3	6.3	6.6	7.8	7.9	9.3	9.2
Chloride	mg/l	500		22	23	50 0.34	56	56 0.27	51 0.34	64	65 0.33	100 0.37	100
Fluoride Hydroxide as OH, Calculated	mg/l mg/l	2	P	0.27 ND	0.27 ND	0.34 ND	0.28 ND	ND	0.34 ND	0.33 ND	0.33 ND	ND	0.38 ND
Iodide	ug/l			17	19	ND	7.3	6.6	ND	ND	ND	74	86
Nitrate (as NO3)	mg/l	45	P	ND	ND	9.6	10	9.7	9.9	7.6	7.8	ND	ND
Nitrate as Nitrogen	mg/l	10	P	ND	ND	2.2	2.3	2.2	2.2	1.7	1.8	ND	ND
Nitrite, as Nitrogen	mg/l	1	P	ND									
Potassium, Total	mg/l			2.6	2.6	3.1	3.4	3.4	3	3.7	3.6	3.3	3.2
Sodium, Total	mg/l	500	C	46	44	40	46 99	46	40	53	52	52	52
Sulfate Total Dissolved Solid (TDS)	mg/l mg/l	500 1000		58 290	59 300	100 390	400	98 380	100 400	120 480	120 480	120 560	120 540
Nitrate + Nitrite, as Nitrogen	mg/l	1000	P	ND	ND	2.2	2.3	2.2	2.2	1.7	1.8	ND	ND
General Physical Properties			Ĺ								.,		
Apparent Color	ACU	15	S	ND	3	ND							
Hardness (Total, as CaCO3)	mg/l			160	158	239	213	211	240	273	275	345	342
Lab pH	Units			7.91	8.19	7.72	7.91	7.72	7.94	7.57	7.87	7.65	7.91
Langelier Index - 25 degree Odor	None TON	3	S	0.431 ND	0.704 ND	0.338 ND	0.431 ND	0.24 ND	0.531 ND	0.281 ND	0.588 ND	0.499 ND	0.743 ND
Specific Conductance	umho/cn	1600		480	500	630	630	620	640	740	770	890	900
Turbidity	NTU	5	S	ND	0.15	ND	ND	0.2	ND	ND	ND	0.25	0.3
Metals													
Aluminum, Total	ug/l	1000		ND									
Antimony, Total	ug/l	6	P	ND									
Arsenic, Total	ug/l	10	P P	130	1.9	2.6 140	2.6 85	2.5 86	2.7 140	1.8 77	1.7 77	230	220
Barium, Total Beryllium, Total	ug/l ug/l	1000	P	ND	ND ND	ND							
Cadmium, Total	ug/l	5	P	ND									
Chromium, Total	ug/l	50	P	ND	ND	0.78	ND	ND	0.75	0.66	0.6	ND	ND
Hexavalent Chromium (Cr VI)	ug/l	10	P	ND	ND	0.81	ND	ND	0.77	0.6	0.59	ND	ND
Copper, Total	ug/l	1300		ND	ND	ND	ND	ND	ND	0.61	0.5	ND	ND
Iron, Total	mg/l	0.3	S	0.035	0.033	ND	ND	ND	ND	ND	ND	0.12	0.12
Lead, Total Magnesium, Total	ug/l mg/l	15	P	ND 7.83	ND 7.64	ND 14.4	ND 11.4	ND 11.5	ND 14.2	ND 15.8	ND 15.6	ND 24.7	ND 24.1
Manganese, Total	ug/l	50	S	42	43	3.6	3.3	3.4	2.1	ND	3.6	130	120
Mercury	ug/l	2	P	ND	0.067	ND	0.05						
Nickel, Total	ug/l	100	P	ND									
Selenium, Total	ug/l	50	P	ND	ND	0.98	0.72	0.71	0.85	1.3	1.2	ND	ND
Silver, Total	ug/l	100	S	ND									
Thallium, Total Zinc, Total	ug/l ug/l	2 5000	P	ND ND									
Volatile Organic Compounds	ug/1	3000	3	ND									
1,1-Dichloroethane	ug/l	5	P	ND									
1,1-Dichloroethylene	ug/l	6	P	ND									
1,2-Dichloroethane	ug/l	0.5	P	ND									
Benzene	ug/l	1	P	ND									
Carbon Tetrachloride Chlorobenzene	ug/l ug/l	0.5 70		ND ND									
Chloromethane (Methyl Chloride)	ug/1 ug/1	70	Г	ND ND	ND	ND ND	ND						
cis-1,2-Dichloroethylene	ug/l	6	P	ND	ND	ND	ND	ND	ND	0.67	0.5	ND	ND
Di-Isopropyl Ether	ug/l			ND									
Ethylbenzene	ug/l	300	P	ND									
Ethyl Tert Butyl Ether	ug/l	150	D.	ND									
Freon 11 Freon 113	ug/l ug/l	150 1200		ND ND									
Methylene Chloride	ug/l ug/l	5	P	ND ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND
MTBE	ug/l	13		ND									
Styrene	ug/l	100		ND									
Tert Amyl Methyl Ether	ug/l			ND									
TBA	ug/l	12	N	N-	N-	NY		\v-	N		4-	N=	
Tetrachloroethylene (PCE)	ug/l	5 150	P	ND ND	ND	ND	ND	ND	ND	3.7	4.2	ND ND	ND ND
Toluene Total Trihalomethanes	ug/l ug/l	80	P	ND ND									
trans-1,2-Dichloroethylene	ug/l	10	P	ND									
Trichloroethylene (TCE)	ug/l	5	P	ND	ND	ND	ND	ND	ND	1.5	1.6	ND	ND
Vinyl chloride (VC)	ug/l	0.5	P	ND									
Xylenes (Total)	ug/l	1750	P	ND									
Others	. 14		**	AID	MD	11	1.7	1.7	11	1.7	1.7	0.077	0.005
1,4-Dioxane Perchlorate	ug/l	6	N P	ND ND	ND ND	3.3 1.4	1.5 0.58	1.5 0.59	3.3 1.4	0.37	0.38	0.077 ND	0.085 ND
Surfactants	ug/l mg/l	0.5		ND ND	ND ND	ND	ND	0.39 ND	ND	ND	0.38 ND	ND ND	ND ND
Total Organic Carbon	mg/l	3.3	3	0.37	0.31	ND	0.35	0.51	0.3	0.49	0.31	1	0.97

TABLE 3.1 CENTRAL BASIN WATER QUALITY RESULTS REGIONAL GROUNDWATER MONITORING - WATER YEAR 2021-2022 Page 34 of 38

			ре				uge o .		South (Gate #2					
Constituents	Units	MCL	MCL Type	Zor			ne 2	Zor	ne 3	Zoi	ne 4		ne 5		ne 6
General Minerals	Ū	M	Ň	5/17/2022	9/15/2022	5/17/2022	9/15/2022	5/17/2022	9/15/2022	5/17/2022	9/15/2022	5/17/2022	9/15/2022	5/17/2022	9/15/2022
Alkalinity	mg/l			180	170	180	180	180	170	180	170	180	170	200	200
Anion Sum	meq/l			5.9	5.8	6	6	5.8	5.8	6.6	6.6	5.9	5.9	6.5	6.4
Bicarbonate as HCO3	mg/l			220	210	220	220	220	210	210	210	220	210	250	240
Boron	mg/l	1	N	0.13	0.13	0.13	0.13	0.11	0.1	0.14	0.14	0.14	0.13	0.15	0.15
Bromide	ug/l			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Calcium, Total	mg/l			59.1	58.5	60.3	59.9	60.1	59	64.2	65.5	58.3	58.1	63.7	64.4
Carbon Dioxide	mg/l			160	153	166	160	158	152	159	156	159	153	184	178
Carbonate as CO3	mg/l			ND 5.7	ND 5.7	ND 5.0	ND 5.8	ND 5.6	ND 5.5	ND 6.2	ND 6.4	ND 5.7	ND 5.7	ND 6.1	ND 6.2
Cation Sum Chloride	meq/l mg/l	500	S	22	22	5.8	22	22	22	36	36	23	23	25	25
Fluoride	mg/l	2	P	0.36	0.37	0.34	0.35	0.22	0.23	0.39	0.4	0.38	0.39	0.44	0.44
Hydroxide as OH, Calculated	mg/l		-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Iodide	ug/l			19	20	16	18	20	23	ND	ND	17	19	11	13
Nitrate (as NO3)	mg/l	45	P	ND	ND	ND	ND	ND	ND	3	3	ND	ND	ND	ND
Nitrate as Nitrogen	mg/l	10	P	ND	ND	ND	ND	ND	ND	0.67	0.68	ND	ND	ND	ND
Nitrite, as Nitrogen	mg/l	1	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Potassium, Total	mg/l			3.5	3.4	3.7	3.5	2.2	2.1	3.5	3.5	3.3	3.2	2.9	2.9
Sodium, Total	mg/l			37	38	39	40	42	41	39	40	40	40	40	41
Sulfate	mg/l	500	S	82	84	81	83	79	81	97	100	83	85	83	84
Total Dissolved Solid (TDS)	mg/l	1000	S	350	350	350	340	340	330	390	380	330	330	370	370
Nitrate + Nitrite, as Nitrogen	mg/l	10	P	ND	ND	ND	ND	ND	ND	0.67	0.68	ND	ND	ND	ND
General Physical Properties	ACTI	1.7	C	NID	MID	2	NID	MD	MD	NID	MD	NID	MD	NID	NID
Apparent Color	ACU	15	S	ND 100	ND 197	3	ND 200	ND 197	ND 194	ND 222	ND 226	ND 102	ND 102	ND 219	ND 220
Hardness (Total, as CaCO3)	mg/l			199 7.92		7.93	200	187 8.03	184		226 7.96	193 7.91	192 8.07	218	7.9
Lab pH Langelier Index - 25 degree	Units None			0.513	8.11 0.673	0.531	8.08 0.681	0.632	8.18 0.752	7.81 0.429	0.565	0.502	0.635	7.8 0.466	0.571
Odor	TON	3	S	0.515 ND	ND	ND	ND	ND	ND	ND	0.363 ND	0.302 ND	ND	ND	ND
Specific Conductance	amho/cn	1600		540	540	550	550	530	540	610	620	540	550	590	590
Turbidity	NTU	5	S	0.15	0.2	0.25	0.3	0.15	0.15	0.25	0.15	0.2	0.25	0.15	0.2
Metals	1,10			0.15	0.2	0.20	0.5	0.15	0.12	0.25	0.12	0.2	0.25	0.15	0.2
Aluminum, Total	ug/l	1000	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Antimony, Total	ug/l	6	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Arsenic, Total	ug/l	10	P	ND	ND	2	2	2.2	1.9	0.82	0.89	0.79	0.83	0.74	0.8
Barium, Total	ug/l	1000	P	60	59	70	70	100	99	80	81	100	100	97	98
Beryllium, Total	ug/l	4	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cadmium, Total	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chromium, Total	ug/l	50	P	ND	ND	ND	ND	ND	ND	2.2	2.2	ND	ND	ND	ND
Hexavalent Chromium (Cr VI)	ug/l	10	P	ND	ND	0.021	ND	0.062	ND	2.4	2.3	0.057	ND	0.056	0.12
Copper, Total	ug/l	1300		ND	ND	0.86	ND	ND	ND	ND	ND	ND	ND	ND	ND
Iron, Total	mg/l	0.3	S	0.05	0.053	0.13	0.12	0.038	0.05	ND	ND	ND	ND	0.038	0.038
Lead, Total	ug/l	15	P	ND 12.6	ND 12.5	0.39	ND 12.2	ND 9	ND 8.81	ND 15	ND 15.3	ND 11.5	ND 11.5	ND 14.3	ND 14.4
Magnesium, Total Manganese, Total	mg/l ug/l	50	S	62	60	39	39	97	95	4.4	3.8	22	21	64	70
Mercury	ug/l	2	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Nickel, Total	ug/l	100	P	ND	ND	ND	ND	ND	ND	ND	ND	2.4	ND	ND	ND
Selenium, Total	ug/l	50	P	ND	ND	ND	ND	ND	ND	2	2.1	ND	ND	ND	ND
Silver, Total	ug/l	100	S	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Thallium, Total	ug/l	2	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Zinc, Total	ug/l	5000	S	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Volatile Organic Compounds															
1,1-Dichloroethane	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethylene	ug/l	6	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	ug/l	0.5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzene	ug/l	1	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND
Carbon Tetrachloride	ug/l	70	P P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Chlorobenzene Chloromethane (Methyl Chloride)	ug/l ug/l	70	Р	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	0.68
cis-1,2-Dichloroethylene	ug/l ug/l	6	P	ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND
Di-Isopropyl Ether	ug/l	U	Ė	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	ug/l	300	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethyl Tert Butyl Ether	ug/l		Ė	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Freon 11	ug/l	150	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Freon 113	ug/l	1200	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene Chloride	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MTBE	ug/l	13	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Styrene	ug/l	100	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tert Amyl Methyl Ether	ug/l		Ļ	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TBA	ug/l	12	N												
Tetrachloroethylene (PCE)	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	ug/l	150	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total Trihalomethanes	ug/l	80	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethylene	ug/l	10	P	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND ND
Trichloroethylene (TCE)	ug/l	5	P	ND	ND	ND	ND ND	ND ND	ND	ND	ND	ND ND	ND ND	ND ND	ND ND
Vinyl chloride (VC)	ug/l	0.5	P	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND ND
Xylenes (Total) Others	ug/l	1750	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dioxane	ug/l	1	N	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Perchlorate	ug/l	6	P	ND	ND	ND	ND	ND	ND	0.32	0.35	ND	ND	ND	ND
Surfactants	mg/l	0.5	S	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total Organic Carbon	mg/l	3.5		ND	0.31	0.35	ND	ND	0.32	ND	ND	ND	ND	ND	ND
					J.J.1	0.00			J.J.L						- 1

TABLE 3.1 CENTRAL BASIN WATER QUALITY RESULTS REGIONAL GROUNDWATER MONITORING - WATER YEAR 2021-2022 Page 35 of 38

			уре					White	tier #1				
Constituents	Units	MCL	MCL Type	Zor 4/27/2022	ne 1 8/22/2022	Zor 4/27/2022	ne 2 8/22/2022	Zor 4/27/2022	ne 3 8/22/2022	Zo: 4/27/2022	ne 4 8/22/2022	Zor 4/27/2022	ne 5 8/22/2022
General Minerals													
Alkalinity	mg/l	<u> </u>		280	270	290	290	300	300	270	270	240	240
Anion Sum Bicarbonate as HCO3	meq/l mg/l			43 340	42 330	41 360	40 360	35 370	34 370	12 330	12 320	12 300	12 290
Boron	mg/l	1	N	0.9	0.9	1	0.96	0.76	0.78	0.21	0.2	0.17	0.16
Bromide	ug/l		- 1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Calcium, Total	mg/l			198	189	191	180	183	181	83.1	80.4	85	80.4
Carbon Dioxide	mg/l			259	254	274	273	281	279	249	247	226	223
Carbonate as CO3	mg/l			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cation Sum	meq/l	500	0	41	40	39	37	32	32	12	12	12	11
Chloride Fluoride	mg/l	500	S P	300 ND	290 ND	260 ND	250 ND	230 ND	220 ND	83 0.17	82 0.17	91 0.28	90 0.29
Hydroxide as OH, Calculated	mg/l mg/l		Г	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Iodide	ug/l			160	130	150	120	120	100	92	77	1.7	1.5
Nitrate (as NO3)	mg/l	45	P	ND	ND	ND	ND	ND	ND	19	19	25	25
Nitrate as Nitrogen	mg/l	10	P	ND	ND	ND	ND	ND	ND	4.2	4.2	5.6	5.7
Nitrite, as Nitrogen	mg/l	1	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Potassium, Total	mg/l			15	16	14	14	10	11	5	5.2	4.2	4.3
Sodium, Total	mg/l	500		450	440	430	410	320	320	110	100	91	87
Sulfate	mg/l	500	S	1400	1400	1300	1300	1100	1000	190	190	180	180
Total Dissolved Solid (TDS) Nitrate + Nitrite, as Nitrogen	mg/l mg/l	1000	P	2700 ND	2800 ND	2600 ND	2600 ND	2200 ND	2100 ND	690 4.2	700 4.2	670 5.6	5.7
General Physical Properties	mg/I	10	1	IND	ND	ND	ND	ND	TAD	7.2	7.2	5.0	5.1
Apparent Color	ACU	15	S	15	15	12	20	10	10	ND	ND	ND	ND
Hardness (Total, as CaCO3)	mg/l			1040	1020	1000	963	879	885	355	349	377	362
Lab pH	Units			7.51	7.57	7.56	7.58	7.59	7.65	7.58	7.61	7.58	7.63
Langelier Index - 25 degree	None			0.559	0.577	0.615	0.609	0.667	0.729	0.426	0.44	0.388	0.412
Odor	TON	3	S	ND	ND	ND	ND 2000	ND	ND 2000	ND	ND	ND	ND
Specific Conductance Turbidity	umho/cn NTU		S	4000 2.3	3900 3.1	3800	3800 1.9	3200	3000 1.3	1100 ND	1100 ND	1000 ND	1100 ND
Metals	NIU	5	2	2.3	3.1	1.5	1.9	1.1	1.3	ND	ND	ND	ND
Aluminum, Total	ug/l	1000	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Antimony, Total	ug/l	6	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Arsenic, Total	ug/l	10	P	ND	ND	ND	ND	ND	ND	1.4	1.4	0.84	0.76
Barium, Total	ug/l	1000	P	17	18	18	17	24	25	31	34	27	27
Beryllium, Total	ug/l	4	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cadmium, Total	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chromium, Total	ug/l	50	P	ND	ND	ND	ND	0.32	ND	ND	ND	3.6	3.7
Hexavalent Chromium (Cr VI) Copper, Total	ug/l ug/l	10	P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	3.9 ND	4 ND
Iron, Total	mg/l	0.3	S	0.59	0.59	0.46	0.46	0.37	0.38	ND ND	ND ND	ND	ND ND
Lead, Total	ug/l	15	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Magnesium, Total	mg/l		Ť	134	133	128	125	102	105	35.9	36	40	39.2
Manganese, Total	ug/l	50	S	51	50	69	64	77	75	27	25	2.4	2.5
Mercury	ug/l	2	P	ND	0.072	ND	0.05	ND	0.06	ND	0.066	ND	0.074
Nickel, Total	ug/l	100	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Selenium, Total	ug/l	50	P	ND 0.25	ND	ND	ND	ND	ND	11	11	17 ND	16
Silver, Total Thallium, Total	ug/l ug/l	100	S P	0.25 ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Zinc, Total	ug/l	5000	S	ND	ND	ND	ND	ND	ND	ND	ND ND	ND ND	ND
Volatile Organic Compounds	ug/1	3000	٥	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethylene	ug/l	6	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	ug/l	0.5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzene	ug/l	1	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Tetrachloride	ug/l	0.5	P	ND ND	ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND
Chlorobenzene Chloromethane (Methyl Chloride)	ug/l ug/l	70	P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
cis-1,2-Dichloroethylene	ug/l ug/l	6	P	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Di-Isopropyl Ether	ug/l		1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	ug/l	300	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethyl Tert Butyl Ether	ug/l			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Freon 11	ug/l	150	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Freon 113	ug/l	1200		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene Chloride	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MTBE	ug/l	13 100	P P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Styrene Tert Amyl Methyl Ether	ug/l ug/l	100	ľ	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
TBA	ug/l	12	N	ND	ND	ND	ND	ND	ND	TVD	TVD	ND	TVD
Tetrachloroethylene (PCE)	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	ug/l	150	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total Trihalomethanes	ug/l	80	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethylene	ug/l	10	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethylene (TCE)	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl chloride (VC)	ug/l	0.5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Xylenes (Total)	ug/l	1750	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Others 1,4-Dioxane	ug/l	1	N	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Perchlorate	ug/l ug/l	6	P	ND	ND ND	ND ND	ND ND	ND ND	ND ND	1.1	1.2	2.2	2.2
Surfactants	mg/l	0.5	S	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total Organic Carbon	mg/l			2	1.7	2.4	2	1.9	1.7	ND	ND	ND	ND
-													

TABLE 3.1 CENTRAL BASIN WATER QUALITY RESULTS REGIONAL GROUNDWATER MONITORING - WATER YEAR 2021-2022 Page 36 of 38

			ype			Whit	tier #2		
Constituents	Units	MCL	MCL Type	Zone 1 3/1/2022	Zone 2 3/1/2022	Zone 3 3/1/2022	Zone 4 3/1/2022	Zone 5 3/1/2022	Zone 6 3/1/2022
General Minerals									
Alkalinity	mg/l			240	160	220	420	240	370
Anion Sum Bicarbonate as HCO3	meq/l			12	4.3 190	13	27	12	17
Boron	mg/l	1	NI	300	0.21	270 0.25	510	300	450 0.37
	mg/l	1	N	0.71 0.91			0.83	0.2 ND	0.37 ND
Bromide Track	ug/l				ND	0.52	0.77		
Calcium, Total	mg/l			38.2	23.8	88.3	125	120	157
Carbon Dioxide	mg/l			221 ND	143	198	387	220	336
Carbonate as CO3 Cation Sum	mg/l			ND 12	ND 4.2	ND 12	ND 27	ND	ND 17
Chloride	meq/l	500	C	180	23	13 130	220	12 120	17 120
luoride	mg/l	2	S	0.37	0.3	0.27	0.46	0.24	0.26
lydroxide as OH, Calculated	mg/l		Г	ND	ND	ND	ND	ND	ND
odide	mg/l			120	25	19	110	ND ND	ND ND
	ug/l	45	P	ND	ND	3.1	110		32
litrate (as NO3)	mg/l	10	P	ND ND	ND ND	0.71	2.8	23	7.3
litrate as Nitrogen	mg/l		P					5.3	
litrite, as Nitrogen	mg/l	1	Р	ND	ND	ND 4.2	ND	ND 4.0	ND 5.2
otassium, Total	mg/l			3.5	2.4	4.3	4.7	4.9	5.3
odium, Total	mg/l	500	-	190	61	120	320	80	140
ulfate	mg/l	500	S	110	22	240	600	170	290
otal Dissolved Solid (TDS)	mg/l	1000		710	260	800	1700	740	1100
itrate + Nitrite, as Nitrogen	mg/l	10	P	ND	ND	0.71	2.8	5.3	7.3
General Physical Properties				**					
pparent Color	ACU	15	S	30	3	ND 270	ND	ND	ND 550
lardness (Total, as CaCO3)	mg/l			176	75.5	370	657	397	550
ab pH	Units			7.8	7.94	7.83	7.65	7.81	7.68
angelier Index - 25 degree	None			0.254	0.112	0.596	0.746	0.756	0.881
Odor	TON	3	S	ND	ND	ND	ND	ND	ND
pecific Conductance	umho/cm			1200	420	1200	2800	1200	1800
urbidity	NTU	5	S	3.3	ND	ND	ND	0.15	0.1
Ietals									
luminum, Total	ug/l	1000	P	ND	ND	ND	ND	ND	ND
ntimony, Total	ug/l	6	P	ND	ND	ND	ND	ND	ND
rsenic, Total	ug/l	10	P	3.5	ND	1.2	0.47	1	1.2
arium, Total	ug/l	1000	P	18	24	49	13	71	29
eryllium, Total	ug/l	4	P	ND	ND	ND	ND	ND	ND
admium, Total	ug/l	5	P	ND	ND	ND	ND	ND	ND
hromium, Total	ug/l	50	P	ND	ND	3.1	ND	2.3	4.4
lexavalent Chromium (Cr VI)	ug/l	10	P	ND	ND	3.2	ND	2.1	4.7
opper, Total	ug/l	1300	P	ND	0.63	0.96	2.2	1.1	1.9
on, Total	mg/l	0.3	S	1.2	ND	ND	ND	ND	ND
ead, Total	ug/l	15	P	ND	ND	ND	ND	ND	ND
Magnesium, Total	mg/l			19.5	3.92	36.4	83.7	23.5	38.3
Ianganese, Total	ug/l	50	S	120	36	41	120	ND	ND
lercury	ug/l	2	P	ND	ND	ND	ND	ND	ND
lickel, Total	ug/l	100	P	ND	ND	ND	ND	ND	ND
elenium, Total	ug/l	50	P	ND	ND	ND	4.3	0.86	1.5
ilver, Total	ug/l	100	S	ND	ND	ND	ND	ND	ND
hallium, Total	ug/l	2	P	ND	ND	ND	ND	ND	ND
inc, Total	ug/l	5000	S	ND	ND	ND	ND	ND	ND
olatile Organic Compounds									
,1-Dichloroethane	ug/l	5	P	ND	ND	ND	ND	ND	ND
,1-Dichloroethylene	ug/l	6	P	ND	ND	ND	ND	ND	ND
2-Dichloroethane	ug/l	0.5	P	ND	ND	ND	ND	ND	ND
enzene	ug/l	1	P	ND	ND	ND	ND	ND	ND
arbon Tetrachloride	ug/l	0.5	P	ND	ND	ND	ND	ND	ND
hlorobenzene	ug/l	70	P	ND	ND	ND	ND	ND	ND
hloromethane (Methyl Chloride)	ug/l	, ,	Ė	ND	ND	ND	ND	ND	ND
s-1,2-Dichloroethylene	ug/l	6	P	ND	ND	ND	ND	ND	ND
i-Isopropyl Ether	ug/l		Ė	ND	ND ND	ND	ND	ND ND	ND
thylbenzene	ug/l	300	P	ND	ND	ND	ND	ND	ND
thyl Tert Butyl Ether	ug/l	500	1	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
reon 11	ug/l	150	P	ND ND	ND ND	ND	ND	ND ND	ND
		1200		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
reon 113 Iethylene Chloride	ug/l	5	P	ND ND	ND ND	ND ND		ND ND	ND ND
ITBE	ug/l			ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	ug/l	13	P						
tyrene	ug/l	100	P	ND ND	ND ND	ND	ND ND	ND ND	ND
ert Amyl Methyl Ether	ug/l	12	3.1	ND	ND	ND	ND	ND	ND
BA (BGF)	ug/l	12	N) VP	N/P	3.775	N.T.	N TPS	0.51
etrachloroethylene (PCE)	ug/l	5	P	ND	ND	ND	ND	ND	0.56
oluene	ug/l	150	P	ND	ND	ND	ND	ND	ND Oct
otal Trihalomethanes	ug/l	80	P	ND	ND	ND	ND	ND	0.64
ans-1,2-Dichloroethylene	ug/l	10	P	ND	ND	ND	ND	ND	ND
richloroethylene (TCE)	ug/l	5	P	ND	ND	ND	ND	ND	ND
inyl chloride (VC)	ug/l	0.5	P	ND	ND	ND	ND	ND	ND
(Yylenes (Total)	ug/l	1750	P	ND	ND	ND	ND	ND	ND
thers									
,4-Dioxane	ug/l	1	N	ND	ND	0.58	ND	3.3	0.51
erchlorate	ug/l	6	P	ND	ND	1.4	1.6	2	2.2
urfactants	mg/l	0.5	S	ND	ND	ND	ND	ND	ND
Total Organic Carbon	mg/l			0.79	0.36	0.4	0.56	0.44	0.5
				****	****	***		****	

TABLE 3.1 CENTRAL BASIN WATER QUALITY RESULTS REGIONAL GROUNDWATER MONITORING - WATER YEAR 2021-2022 Page 37 of 38

			be			- I uge 0 /		tier Narro	we #1			
Constituents	Units	MCL	MCL Type	Zone 1	Zone 2	Zone 3	Zone 4	Zone 5	Zone 6	Zone 7	Zone 8	Zone 9
General Minerals	n	2	Σ	3/14/2022	3/14/2022	3/14/2022	3/14/2022	3/14/2022	3/14/2022	3/15/2022	3/15/2022	3/15/2022
Alkalinity	mg/l			100	110	150	170	160	180	150	180	170
Anion Sum	meq/l			19	3.3	8	8.6	9.2	8.6	7.4	8.4	9.6
Bicarbonate as HCO3	mg/l			120	140	180	200	200	220	180	210	210
Boron	mg/l	1	N	1.4	0.15	0.099	0.18	0.18	0.23	0.22	0.2	0.24
Bromide	ug/l			5.5	ND	ND	ND	ND	ND	ND	ND	ND (5.0
Calcium, Total	mg/l			61.3	9.66 104	96.6	91.2	97.5 148	65.9	46.9 134	64.5	65.9
Carbon Dioxide Carbonate as CO3	mg/l mg/l			113 ND	ND	135 ND	150 ND	ND	159 ND	ND	157 ND	157 ND
Cation Sum	meq/l			19	3.1	7.3	8.1	8.6	8	7	8	9.2
Chloride	mg/l	500	S	620	26	95	100	120	110	88	93	120
Fluoride	mg/l	2	P	0.79	0.35	0.2	0.19	0.2	0.23	0.23	0.24	0.3
Hydroxide as OH, Calculated	mg/l			ND	ND	ND	ND	ND	ND	ND	ND	ND
Iodide	ug/l			1200	32	ND	6.7	8.6	10	6.5	5.6	9.5
Nitrate (as NO3)	mg/l	45	P	ND	ND	7.4	5.6	9.8	ND	1.5	15	19
Nitrate as Nitrogen	mg/l	10	P	ND	ND	1.7	1.3	2.2	ND	0.34	3.3	4.3
Nitrite, as Nitrogen	mg/l	1	P	ND	ND	ND	ND	0.96	ND	0.35	0.2	ND
Potassium, Total	mg/l			4.3	1.6	3.1	4.5	4.9	5.3	5.1	5.1	8.8
Sodium, Total	mg/l	500	C	330	58	38	59	57	84	85	86	98
Sulfate	mg/l	500	S	1.2	14	110	110	120	97	89	98	120
Total Dissolved Solid (TDS) Nitrate + Nitrite, as Nitrogen	mg/l mg/l	1000	S	1300 ND	200 ND	480 1.7	520 1.3	550 3.2	510 ND	0.69	520 3.5	590 4.3
General Physical Properties	mg/I	10	I.	ND	ND	1./	1.3	3.2	ND	0.09	ر.ر	4.5
Apparent Color	ACU	15	S	10	ND	ND	ND	ND	ND	ND	ND	4
Hardness (Total, as CaCO3)	mg/l			204	24.1	280	271	299	211	161	208	235
Lab pH	Units			6.93	7.85	7.72	7.86	7.89	8.03	8.01	7.96	7.88
Langelier Index - 25 degree	None			-0.868	-0.511	0.416	0.577	0.604	0.632	0.401	0.551	0.442
Odor	TON	3	S	4	ND	ND	ND	ND	ND	ND	ND	ND
Specific Conductance	ımho/cm	1600		2300	290	670	730	770	730	660	740	840
Turbidity	NTU	5	S	28	0.35	0.7	0.4	0.6	0.35	0.35	0.35	0.3
Metals												
Aluminum, Total	ug/l	1000		27	ND	40	ND	ND	ND	ND	ND	ND
Antimony, Total	ug/l	6	P	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.50
Arsenic, Total	ug/l	10	P	4.3	2.2	0.99	1.4	1.3	1.8	1.9	1.2	0.58
Barium, Total	ug/l	1000	_	450	23	160	120	210 ND	87 ND	74 ND	68 ND	93 ND
Beryllium, Total Cadmium, Total	ug/l	5	P P	ND 0.38	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Chromium, Total	ug/l ug/l	50	P	2.9	2.1	5.8	4.8	2.9	6.6	4.3	5.9	9.3
Hexavalent Chromium (Cr VI)	ug/l	10	P	ND	0.042	0.74	0.024	0.026	ND	ND	ND	ND
Copper, Total	ug/l	1300	_	0.65	ND	ND	ND	1.2	0.95	1.2	1.7	6.3
Iron, Total	mg/l	0.3	S	9.5	0.062	0.16	0.04	0.033	0.049	0.035	0.047	0.065
Lead, Total	ug/l	15	P	0.37	ND	ND	ND	ND	ND	ND	ND	ND
Magnesium, Total	mg/l			12.3	ND	9.35	10.6	13.4	11.2	10.5	11.3	17
Manganese, Total	ug/l	50	S	630	13	3.1	13	34	13	6	24	420
Mercury	ug/l	2	P	ND	ND	ND	ND	ND	ND	ND	ND	ND
Nickel, Total	ug/l	100	P	3.8	ND	6.4	6.6	28	16	8.2	29	21
Selenium, Total	ug/l	50	P	ND	ND	ND	ND	ND	ND	ND	ND	ND
Silver, Total	ug/l	100	S	ND	ND	ND	ND	ND	ND	ND	ND	ND
Thallium, Total	ug/l	2 5000	P	ND 420	ND 29	ND 20	ND 23	ND 29	ND 23	ND 13	ND 20	ND 31
Zinc, Total Volatile Organic Compounds	ug/l	3000	3	420	29	20	23	29	23	13	20	31
1.1-Dichloroethane	ug/l	5	Р	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethylene	ug/l	6	P	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	ug/l	0.5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzene	ug/l	1	P	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Tetrachloride	ug/l	0.5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	ug/l	70	P	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloromethane (Methyl Chloride)	ug/l			ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethylene	ug/l	6	P	ND	ND	ND	ND	ND	ND	ND	ND	ND
Di-Isopropyl Ether	ug/l	200	Ļ	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	ug/l	300	Р	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethyl Tert Butyl Ether Freon 11	ug/l	150	D	ND	ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND
Freon 11 Freon 113	ug/l	150 1200		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Methylene Chloride	ug/l ug/l	5	P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
MTBE	ug/l	13		ND	ND	ND	ND ND	ND ND	ND ND	ND	ND	ND ND
Styrene	ug/l	100		ND	ND	ND	ND	ND	ND	ND	ND	ND
Tert Amyl Methyl Ether	ug/l	.00	Ė	ND	ND	ND	ND	ND	ND	ND	ND	ND
TBA	ug/l	12	N									
Tetrachloroethylene (PCE)	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	ug/l	150	P	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total Trihalomethanes	ug/l	80	P	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethylene	ug/l	10	P	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethylene (TCE)	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl chloride (VC)	ug/l	0.5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND
Xylenes (Total)	ug/l	1750	P	ND	ND	ND	ND	ND	ND	ND	ND	ND
Others										_		_
1,4-Dioxane	ug/l	1	N	0.14	ND	0.61	0.71	0.48	0.45	0.44	0.45	0.63
Perchlorate	ug/l	6	P	ND 0.051	ND	0.18	ND	ND	ND	ND	ND	ND
Surfactants Total Organia Conhan	mg/l	0.5	S	0.051	ND 0.5	ND 0.48	ND 0.75	ND 0.72	ND 0.09	ND 1	ND	ND
Total Organic Carbon	mg/l		<u> </u>	13	0.5	0.48	0.75	0.72	0.98	1	1.1	1.5

TABLE 3.1 CENTRAL BASIN WATER QUALITY RESULTS REGIONAL GROUNDWATER MONITORING - WATER YEAR 2021-2022 Page 38 of 38

			уре				Willowb	prook #1			
Constituents	Units	MCL	MCL Type	Zor 4/26/2022	ne 1 9/2/2022	Zor 4/26/2022	ne 2 9/2/2022	Zor 4/26/2022	ne 3 9/2/2022	Zo 4/26/2022	ne 4 9/2/2022
General Minerals		~	2	4/20/2022	91212022	4/20/2022	91212022	4/20/2022	91212022	4/20/2022	9/2/2022
Alkalinity	mg/l			240	230	200	200	190	180	200	190
Anion Sum Bicarbonate as HCO3	meq/l			5.6 290	5.5 280	5.1 250	5 240	6.1 230	6 220	6.3	6.2 240
Boron	mg/l mg/l	1	N	0.16	0.16	0.12	0.12	0.13	0.13	0.13	0.13
Bromide	ug/l		11	ND	ND	ND	ND	ND	ND	ND	ND
Calcium, Total	mg/l			38.5	37.2	48.5	49.2	59.8	59.2	61.2	61
Carbon Dioxide	mg/l			213	207	179	173	166	161	179	172
Carbonate as CO3	mg/l			ND	ND	ND	ND	ND	ND	ND	ND
Cation Sum Chloride	meq/l mg/l	500	S	5.3	5.4 19	4.9	4.9 22	5.8	5.7 24	5.9 34	5.9 34
Fluoride	mg/l	2	P	0.28	0.25	0.28	0.25	0.37	0.35	0.32	0.32
Hydroxide as OH, Calculated	mg/l			ND	ND	ND	ND	ND	ND	ND	ND
Iodide	ug/l			23	22	22	19	22	20	39	34
Nitrate (as NO3)	mg/l	45	P	ND	ND	ND	ND	ND	ND	ND	ND
Nitrate as Nitrogen Nitrite, as Nitrogen	mg/l mg/l	10	P P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Potassium, Total	mg/l	1	1	4.3	4.4	2.6	2.6	3.7	3.5	3.2	3.1
Sodium, Total	mg/l			61	64	39	39	40	39	45	44
Sulfate	mg/l	500	S	15	11	23	22	82	82	64	64
Total Dissolved Solid (TDS)	mg/l	1000	S	300	310	270	270	320	330	360	360
Nitrate + Nitrite, as Nitrogen General Physical Properties	mg/l	10	P	ND	ND	ND	ND	ND	ND	ND	ND
Apparent Color	ACU	15	S	7.5	7.5	ND	ND	ND	ND	3	ND
Hardness (Total, as CaCO3)	mg/l		Ť	128	122	156	157	201	198	196	194
Lab pH	Units			8.08	8.18	8.1	8.18	7.95	8.05	7.97	8.09
Langelier Index - 25 degree	None		_	0.625	0.688	0.675	0.761	0.579	0.648	0.621	0.717
Odor Specific Conductance	TON	3 1600	S	ND 510	ND 520	ND 470	ND 480	ND 550	ND 570	ND 580	ND 580
Turbidity Turbidity	umho/cm NTU	5	S	3.1	320	ND	0.1	0.2	0.15	5.3	6
Metals	IVIO	3		5.1	1	ND	0.1	0.2	0.13	3.3	0
Aluminum, Total	ug/l	1000	P	ND	ND	ND	ND	ND	ND	ND	ND
Antimony, Total	ug/l	6	P	ND	ND	ND	ND	ND	ND	ND	ND
Arsenic, Total	ug/l	10	P	4.1	3.7	ND	ND	3.1	3	5	5.4
Barium, Total Beryllium, Total	ug/l	1000	P P	46 ND	43 ND	53 ND	52 ND	80 ND	78 ND	150 ND	140 ND
Cadmium, Total	ug/l ug/l	5	P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Chromium, Total	ug/l	50	P	ND	ND	ND	ND	ND	ND	0.53	0.57
Hexavalent Chromium (Cr VI)	ug/l	10	P	0.078	0.093	0.028	0.12	0.025	0.036	0.021	0.15
Copper, Total	ug/l	1300	P	ND	ND	ND	ND	ND	ND	ND	ND
Iron, Total	mg/l	0.3	S	0.069	0.065	ND	ND	0.077	0.085	ND	ND
Lead, Total Magnesium, Total	ug/l mg/l	15	P	ND 7.64	ND 7.17	ND 8.54	ND 8.41	ND 12.6	ND 12.2	ND 10.5	ND 10.2
Manganese, Total	ug/l	50	S	55	50	46	45	31	28	98	95
Mercury	ug/l	2	P	ND	ND	ND	ND	ND	ND	ND	ND
Nickel, Total	ug/l	100	P	ND	ND	ND	ND	ND	ND	ND	ND
Selenium, Total	ug/l	50	P	ND	ND	ND	ND	ND	ND	ND	ND
Silver, Total Thallium, Total	ug/l ug/l	100	S P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Zinc, Total	ug/l	5000		ND	ND	ND	ND	ND	ND	ND	ND
Volatile Organic Compounds	Ŭ										
1,1-Dichloroethane	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethylene	ug/l	6	P	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane Benzene	ug/l ug/l	0.5	P P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Carbon Tetrachloride	ug/l	0.5	_	ND	ND	ND ND	ND	ND ND	ND	ND ND	ND
Chlorobenzene	ug/l	70	P	ND	ND	ND	ND	ND	ND	ND	ND
Chloromethane (Methyl Chloride)	ug/l			ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethylene	ug/l	6	P	ND	ND	ND	ND	ND	ND	ND	ND
Di-Isopropyl Ether Ethylbenzene	ug/l	300	P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Ethyl Tert Butyl Ether	ug/l ug/l	300	r	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Freon 11	ug/l	150	P	ND	ND	ND	ND	ND	ND	ND	ND
Freon 113	ug/l	1200		ND	ND	ND	ND	ND	ND	ND	ND
Methylene Chloride	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND
MTBE	ug/l	13	P	ND	ND	ND	ND	ND	ND	ND	ND
Styrene Tert Amyl Methyl Ether	ug/l ug/l	100	P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
TBA	ug/l	12	N	ND	ND	TAD	ND	IND	ND	מאו	ND
Tetrachloroethylene (PCE)	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	ug/l	150	P	ND	ND	ND	ND	ND	ND	ND	ND
Total Trihalomethanes	ug/l	80	P	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethylene	ug/l	10	P	ND ND	ND	ND ND	ND	ND ND	ND ND	ND	ND ND
Trichloroethylene (TCE) Vinyl chloride (VC)	ug/l ug/l	5 0.5	P P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Xylenes (Total)	ug/l	1750		ND	ND	ND	ND	ND	ND	ND	ND
Others			Ľ						2		
1,4-Dioxane	ug/l	1	N	ND	ND	ND	ND	ND	ND	ND	ND
Perchlorate	ug/l	6	P	ND	ND	ND	ND	ND	ND	ND	ND
Surfactants Total Organic Carbon	mg/l	0.5	S	ND 1.4	ND 1.4	ND 0.48	ND 0.44	ND 0.39	ND 0.33	ND 0.3	ND ND
rotal Organic Cardon	mg/l	İ	L	1.4	1.4	0.48	0.44	0.39	0.55	0.3	ND

TABLE 3.2 WEST COAST BASIN WATER QUALITY RESULTS REGIONAL GROUNDWATER MONITORING - WATER YEAR 2021-2022 Page 1 of 22

			ype			- uge 1 01 -	Cars	on #1			
Constituents	Units	MCL	MCL Type	Zor 4/11/2022	ne 1 8/24/2022	Zor 4/11/2022	ne 2 8/24/2022	Zor 4/11/2022	ne 3 8/24/2022	Zo 4/11/2022	ne 4 8/24/2022
General Minerals											
Alkalinity	mg/l			160	150	190	180	180	170	200	190
Anion Sum Bicarbonate as HCO3	meq/l mg/l			3.8 190	3.6 180	4.4 230	4.2 210	5.7 220	5.4 210	7.2 250	230
Boron	mg/l	1	N	0.097	0.096	0.11	0.11	0.11	0.11	0.13	0.13
Bromide	ug/l		-,	ND	ND	ND	ND	ND	ND	ND	ND
Calcium, Total	mg/l			20.8	20.9	33.3	34.1	46.1	46.6	56.6	58.6
Carbon Dioxide	mg/l			139	132	167	155	162	149	184	172
Carbonate as CO3	mg/l			ND	ND	ND	ND	ND	ND	ND	ND
Cation Sum	meq/l	500	C	3.5	3.4	4	4.1	5.3	5.3	6.6	6.8
Chloride Fluoride	mg/l mg/l	500	S	23 0.22	22 0.22	23 0.18	22 0.18	25 0.26	0.26	54 0.34	54 0.34
Hydroxide as OH, Calculated	mg/l		1	ND	ND	ND	ND	ND	ND	ND	ND
Iodide	ug/l			22	22	22	21	25	24	60	56
Nitrate (as NO3)	mg/l	45	P	ND	ND	ND	ND	ND	ND	ND	ND
Nitrate as Nitrogen	mg/l	10	P	ND	ND	ND	ND	ND	ND	ND	ND
Nitrite, as Nitrogen	mg/l	1	P	ND	ND	ND	ND	ND	ND	ND	ND
Potassium, Total	mg/l			3	3.1	2.6	2.7	3.3	3.3	4	4.2
Sodium, Total Sulfate	mg/l mg/l	500	S	47 ND	46 ND	40 ND	40 ND	44 67	44 66	55 79	56 79
Total Dissolved Solid (TDS)	mg/l mg/l	1000		200	210	220	230	310	330	390	400
Nitrate + Nitrite, as Nitrogen	mg/l	10	P	ND	ND	ND	ND ND	ND	ND	ND	ND
General Physical Properties											
Apparent Color	ACU	15	S	5	4	3	3	ND	ND	ND	ND
Hardness (Total, as CaCO3)	mg/l			67.9	68.1	111	113	167	168	205	211
Lab pH Langelier Index - 25 degree	Units			8.17	8.29	8.11	8.26	8.01	8.2	7.8 0.41	8.03
Odor	None	3	S	0.304 ND	0.394 ND	0.516 ND	0.649 4	0.506 ND	0.669 ND	0.41 ND	0.63 4
Specific Conductance	amho/cn	1600	S	320	340	380	390	490	500	630	660
Turbidity	NTU	5	S	0.15	0.1	ND	0.15	ND	ND	0.35	0.2
Metals											
Aluminum, Total	ug/l	1000		ND	ND	ND	ND	ND	ND	ND	ND
Antimony, Total	ug/l	6	P	ND	ND	ND	ND	ND	ND	ND	ND
Arsenic, Total	ug/l	10	P	0.64	0.58	ND	ND	ND	ND	0.52	0.63
Barium, Total Beryllium, Total	ug/l ug/l	1000	P P	15 ND	14 ND	37 ND	38 ND	69 ND	68 ND	180 ND	180 ND
Cadmium, Total	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND
Chromium, Total	ug/l	50	P	ND	ND	ND	ND	ND	ND	ND	ND
Hexavalent Chromium (Cr VI)	ug/l	10	P	0.063	0.16	0.03	0.25	0.028	0.23	ND	0.076
Copper, Total	ug/l	1300	P	ND	ND	ND	ND	ND	ND	ND	ND
Iron, Total	mg/l	0.3	S	ND	ND	ND	ND	ND	ND	0.088	0.099
Lead, Total	ug/l	15	P	ND	ND	ND	ND	ND	ND	ND	ND
Magnesium, Total	mg/l	50	C	3.86	3.85	6.69	6.82	12.5	12.6	15.4	15.7
Manganese, Total Mercury	ug/l ug/l	50	S P	18 ND	19 ND	13 ND	13 ND	29 ND	29 ND	100 ND	110 ND
Nickel, Total	ug/l	100	P	ND	ND	ND	ND	ND	ND	ND	ND
Selenium, Total	ug/l	50	P	ND	ND	ND	ND	ND	ND	ND	ND
Silver, Total	ug/l	100	S	ND	ND	ND	ND	ND	ND	ND	ND
Thallium, Total	ug/l	2	P	ND	ND	ND	ND	ND	ND	ND	ND
Zinc, Total	ug/l	5000	S	ND	ND	ND	ND	ND	ND	ND	ND
Volatile Organic Compounds	/1	_	n	MD	MD	ND	NID	NID	NID	ND	ND
1,1-Dichloroethane 1,1-Dichloroethylene	ug/l ug/l	6	P P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,2-Dichloroethane	ug/l	0.5	Р	ND	ND	ND	ND ND	ND ND	ND ND	ND	ND
Benzene	ug/l	1	P	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Tetrachloride	ug/l	0.5	P	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	ug/l	70	P	ND	ND	ND	ND	ND	ND	ND	ND
Chloromethane (Methyl Chloride)	ug/l			ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethylene	ug/l	6	P	ND ND	ND	ND	ND ND	ND	ND ND	ND	ND
Di-Isopropyl Ether Ethylbenzene	ug/l ug/l	300	P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Ethyl Tert Butyl Ether	ug/l	300	1	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Freon 11	ug/l	150	P	ND	ND	ND	ND	ND	ND	ND	ND
Freon 113	ug/l	1200		ND	ND	ND	ND	ND	ND	ND	ND
Methylene Chloride	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND
MTBE	ug/l	13	P	ND	ND	ND	ND	ND	ND	ND	ND
Styrene	ug/l	100	P	ND	ND	ND	ND	ND	ND	ND	ND
Tert Amyl Methyl Ether TBA	ug/l ug/l	12	N	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Tetrachloroethylene (PCE)	ug/l	5	P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Toluene	ug/l	150	P	ND	ND	ND	ND	ND	ND	ND	ND
Total Trihalomethanes	ug/l	80	P	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethylene	ug/l	10	P	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethylene (TCE)	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl chloride (VC)	ug/l	0.5	P	ND	ND	ND	ND	ND	ND	ND	ND
Xylenes (Total)	ug/l	1750	P	ND	ND	ND	ND	ND	ND	ND	ND
									i	1	i .
Others 1 4-Dioxane	110/1	1	N	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dioxane	ug/l ug/l	1	N P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	ug/l ug/l mg/l	1 6 0.5	N P S	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND

TABLE 3.2 WEST COAST BASIN WATER QUALITY RESULTS REGIONAL GROUNDWATER MONITORING - WATER YEAR 2021-2022 Page 2 of 22

			e		1 490 2 01 22	Carson #2		
Constituents	ts	1	MCL Type	Zone 1	Zone 2	Zone 3	Zone 4	Zone 5
	Units	MCL	MCI	5/3/2022	5/3/2022	5/3/2022	5/3/2022	5/3/2022
General Minerals								
Alkalinity	mg/l			170	200	180	210	180
Anion Sum Bicarbonate as HCO3	meq/l mg/l			4 210	4.6 240	4.9	5 260	4.8 220
Boron	mg/l	1	N	0.14	0.14	0.13	0.12	0.12
Bromide	ug/l			ND	ND	ND	ND	ND
Calcium, Total	mg/l			2.32	16	32.9	41	44.3
Carbon Dioxide	mg/l			147	173	160	189	161
Carbonate as CO3 Cation Sum	mg/l			ND 3.8	ND 4.5	ND 4.9	ND 5	ND 4.8
Chloride	meq/l mg/l	500	S	20	23	24	28	23
Fluoride	mg/l	2	P	0.29	0.22	0.27	0.17	0.25
Hydroxide as OH, Calculated	mg/l			ND	ND	ND	ND	ND
Iodide	ug/l			23	21	22	25	20
Nitrate (as NO3)	mg/l	45	P	ND	ND	ND	ND	ND
Nitrate as Nitrogen Nitrite, as Nitrogen	mg/l mg/l	10	P P	ND ND	ND ND	ND ND	ND ND	ND ND
Potassium, Total	mg/l		1	2	5	4.9	4.4	3.5
Sodium, Total	mg/l			82	72	52	42	39
Sulfate	mg/l	500	S	ND	0.87	29	ND	27
Total Dissolved Solid (TDS)	mg/l	1000	S	230	240	270	260	260
Nitrate + Nitrite, as Nitrogen	mg/l	10	P	ND	ND	ND	ND	ND
General Physical Properties	ACTI	1.5	C	40	7.5	4	4	ND
Apparent Color Hardness (Total, as CaCO3)	ACU mg/l	15	S	40 5.79	7.5 62.3	125	4 155	ND 150
Lab pH	Units			8.66	8.29	8.16	8.04	8.02
Langelier Index - 25 degree	None			-0.146	0.392	0.521	0.567	0.513
Odor	TON	3	S	ND	ND	ND	2	ND
Specific Conductance	ımho/cn			370	420	460	460	440
Turbidity	NTU	5	S	ND	ND	ND	ND	ND
Metals	/1	1000	n	21	ND	ND	ND	ND
Aluminum, Total Antimony, Total	ug/l ug/l	6	P P	ND	ND ND	ND	ND ND	ND ND
Arsenic, Total	ug/l	10	P	ND ND	ND ND	ND ND	ND	ND ND
Barium, Total	ug/l	1000		1.4	7.9	16	20	26
Beryllium, Total	ug/l	4	P	ND	ND	ND	ND	ND
Cadmium, Total	ug/l	5	P	ND	ND	ND	ND	ND
Chromium, Total	ug/l	50	P	ND	ND	ND	ND	ND
Hexavalent Chromium (Cr VI)	ug/l	10	P P	0.16 ND	0.069 ND	0.051 ND	0.084 ND	0.056 ND
Copper, Total Iron, Total	ug/l mg/l	0.3	S	ND ND	ND ND	ND	ND ND	0.056
Lead, Total	ug/l	15	P	ND ND	ND ND	ND ND	ND	ND
Magnesium, Total	mg/l			ND	5.44	10.5	12.9	9.56
Manganese, Total	ug/l	50	S	2.4	8.2	13	9.5	43
Mercury	ug/l	2	P	ND	ND	ND	ND	ND
Nickel, Total	ug/l	100	P	ND	ND	ND	ND	ND
Selenium, Total	ug/l	50 100	P	ND ND	ND ND	ND ND	ND ND	ND ND
Silver, Total Thallium, Total	ug/l ug/l	2	P	ND ND	ND ND	ND	ND ND	ND ND
Zinc, Total	ug/l	5000		ND ND	ND ND	ND ND	ND	ND ND
Volatile Organic Compounds	8		Ē					
1,1-Dichloroethane	ug/l	5	P	ND	ND	ND	ND	ND
1,1-Dichloroethylene	ug/l	6	P	ND	ND	ND	ND	ND
1,2-Dichloroethane	ug/l	0.5	P	ND ND	ND ND	ND ND	ND ND	ND ND
Benzene Carbon Tetrachloride	ug/l ug/l	0.5	P P	ND ND	ND ND	ND ND	ND ND	ND ND
Chlorobenzene	ug/l ug/l	70	P	ND ND	ND ND	ND ND	ND ND	ND ND
Chloromethane (Methyl Chloride)	ug/l		Ė	ND	ND	ND	ND	ND
cis-1,2-Dichloroethylene	ug/l	6	P	ND	ND	ND	ND	ND
Di-Isopropyl Ether	ug/l			ND	ND	ND	ND	ND
Ethylbenzene	ug/l	300	P	ND	ND	ND	ND	ND
Ethyl Tert Butyl Ether	ug/l	150	P	ND ND	ND ND	ND ND	ND ND	ND ND
Freon 11 Freon 113	ug/l ug/l	150 1200	P P	ND ND	ND ND	ND ND	ND ND	ND ND
Methylene Chloride	ug/l ug/l	5	P	ND ND	ND ND	ND ND	ND ND	ND ND
MTBE	ug/l	13	P	ND	ND	ND	ND	ND
Styrene	ug/l	100	P	ND	ND	ND	ND	ND
Tert Amyl Methyl Ether	ug/l			ND	ND	ND	ND	ND
TBA	ug/l	12	N	ND 2	ND	ND	ND	ND
Tetrachloroethylene (PCE) Toluene	ug/l	150	P P	2 ND	ND ND	ND ND	ND ND	ND ND
Total Trihalomethanes	ug/l ug/l	150 80	P	ND ND	ND ND	ND ND	ND ND	ND ND
trans-1,2-Dichloroethylene	ug/l	10	P	ND ND	ND ND	ND ND	ND ND	ND ND
Trichloroethylene (TCE)	ug/l	5	P	0.5	ND	ND	ND	ND
Vinyl chloride (VC)	ug/l	0.5	P	ND	ND	ND	ND	ND
Xylenes (Total)	ug/l	1750	P	ND	ND	ND	ND	ND
Others			Ļ	V.		\		ļ.,,,,,
1,4-Dioxane	ug/l	1	N	ND	ND	ND ND	ND ND	ND ND
Perchlorate Surfactants	ug/l mg/l	0.5	P	ND ND	ND ND	ND ND	ND ND	ND ND
Total Organic Carbon	mg/l mg/l	0.5	٥	1.4	0.83	0.6	1.2	0.34
Tomi Organic Carbon	111g/1	<u> </u>		1.7	0.05	0.0	1.2	0.57

TABLE 3.2 WEST COAST BASIN WATER QUALITY RESULTS REGIONAL GROUNDWATER MONITORING - WATER YEAR 2021-2022 Page 3 of 22

			Type						Cars	on #3					
Constituents	Units	MCL	MCL T	Zor			ne 2		ne 3		ne 4		ne 5		ne 6
General Minerals	Ċ	Σ	Ň	4/26/2022	9/7/2022	4/26/2022	9/7/2022	4/26/2022	9/7/2022	4/26/2022	9/7/2022	4/26/2022	9/7/2022	4/26/2022	9/7/2022
Alkalinity	mg/l			360	350	160	150	170	160	170	160	180	170	180	170
Anion Sum	meq/l			7.6	7.5	4	3.9	4	3.9	4	3.9	4.3	4.2	5.4	5.3
Bicarbonate as HCO3	mg/l			440	420	190	180	200	190	210	200	220	210	220	210
Boron	mg/l	1	N	0.68	0.65	0.11	0.11	0.11	0.11	0.097	0.092	0.12	0.11	0.13	0.12
Bromide Galainee Tatal	ug/l			ND 9.42	ND 9.16	ND 20.2	ND 10.2	ND	ND	ND 25.0	ND 24.6	ND	ND 20.0	ND 49	ND 46.7
Calcium, Total Carbon Dioxide	mg/l mg/l			8.42 320	8.16 312	20.2 140	19.2	17.5 148	16.7 142	25.8 151	24.6 145	32.5 160	30.9 154	162	46.7 155
Carbonate as CO3	mg/l			ND	11	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cation Sum	meq/l			7.5	7	3.8	3.6	3.8	3.6	3.9	3.7	4.2	4	5.3	5
Chloride	mg/l	500	S	13	13	22	21	22	22	22	22	23	23	23	23
Fluoride	mg/l	2	P	0.48	0.47	0.21	0.2	0.25	0.25	0.22	0.22	0.22	0.22	0.31	0.3
Hydroxide as OH, Calculated	mg/l			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Iodide	ug/l	4.5	D	110	92 ND	23	21	27	21	24	20	25	21	21	19
Nitrate (as NO3) Nitrate as Nitrogen	mg/l mg/l	45 10	P P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Nitrite, as Nitrogen	mg/l	10	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Potassium, Total	mg/l		Ė	3.2	2.8	3.4	3.1	3.6	3.2	4.1	3.7	3.2	2.9	3.7	3.5
Sodium, Total	mg/l			160	150	55	52	61	56	46	43	42	39	40	38
Sulfate	mg/l	500	S	ND	ND	11	11	ND	ND	ND	ND	0.53	0.74	55	56
Total Dissolved Solid (TDS)	mg/l	1000	S	470	440	200	220	190	220	200	180	210	220	290	300
Nitrate + Nitrite, as Nitrogen	mg/l	10	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
General Physical Properties Apparent Color	ACU	15	C	100	100	4	5	7.5	7.5	4	3	3	ND	3	ND
Hardness (Total, as CaCO3)	mg/l	13	S	30.3	29.2	65.5	62.4	56.3	53.5	91.2	86.6	115	109	172	164
Lab pH	Units			8.23	8.37	8.16	8.33	8.15	8.31	8.09	8.28	8.07	8.25	7.96	8.15
Langelier Index - 25 degree	None			0.248	0.368	0.281	0.393	0.239	0.341	0.344	0.494	0.445	0.575	0.488	0.629
Odor	TON	3	S	ND	ND	ND	ND	ND	ND	ND	4	ND	ND	2	4
Specific Conductance	ımho/cn	1600	S	680	740	370	380	370	370	370	380	400	400	500	500
Turbidity	NTU	5	S	ND	ND	ND	0.1	0.1	ND	0.1	ND	ND	ND	0.2	0.15
Metals	/1	1000	D	ND	MD	ND	NID	ND	ND	ND	ND	ND	ND	ND	ND
Aluminum, Total Antimony, Total	ug/l ug/l	1000	P P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Arsenic, Total	ug/l	10	P	ND	ND	ND	ND	0.7	0.77	0.55	0.55	ND	ND	1.7	1.8
Barium, Total	ug/l	1000	_	7.1	6.7	16	16	20	19	24	24	28	28	64	65
Beryllium, Total	ug/l	4	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cadmium, Total	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chromium, Total	ug/l	50	P	0.66	0.62	ND	ND	0.25	ND	ND	ND	ND	ND	ND	ND
Hexavalent Chromium (Cr VI)	ug/l	10	P	0.1	0.25	0.093	0.14	0.044	0.24	0.029	0.093	ND	0.097	ND	0.14
Copper, Total Iron, Total	ug/l mg/l	0.3	P	0.72	0.78	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 0.033
Lead, Total	ug/l	15	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Magnesium, Total	mg/l	15		2.24	2.14	3.68	3.49	3.04	2.86	6.5	6.12	8.2	7.74	12	11.4
Manganese, Total	ug/l	50	S	15	14	15	15	35	35	48	49	24	24	53	53
Mercury	ug/l	2	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Nickel, Total	ug/l	100	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Selenium, Total	ug/l	50	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Silver, Total Thallium, Total	ug/l	100	S P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Zinc, Total	ug/l ug/l	5000	_	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND
Volatile Organic Compounds	ug/1	3000	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethylene	ug/l	6	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	ug/l	0.5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzene	ug/l	1	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Tetrachloride Chlorobenzene	ug/l ug/l	70	P P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Chloromethane (Methyl Chloride)	ug/l ug/l	70	1.	ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND
cis-1,2-Dichloroethylene	ug/l	6	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Di-Isopropyl Ether	ug/l			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	ug/l	300	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethyl Tert Butyl Ether	ug/l	ļ		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Freon 11	ug/l	150	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Freon 113 Methylene Chloride	ug/l	1200	P P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
MTBE	ug/l ug/l	13	P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Styrene	ug/l	100	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tert Amyl Methyl Ether	ug/l		Ė	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TBA	ug/l	12	N												
Tetrachloroethylene (PCE)	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	ug/l	150	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total Trihalomethanes	ug/l	80	P	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
trans-1,2-Dichloroethylene Trichloroethylene (TCE)	ug/l	10	P P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Vinyl chloride (VC)	ug/l ug/l	0.5	P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND
Xylenes (Total)	ug/l	1750		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Others	- 8-		Ė		_					-		-			
1,4-Dioxane	ug/l	1	N	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Perchlorate	ug/l	6	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Surfactants	mg/l	0.5	S	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total Organic Carbon	mg/l	1	l	13	12	0.92	0.76	1.1	1	1.2	0.72	0.52	0.53	ND	0.3

TABLE 3.2 WEST COAST BASIN WATER QUALITY RESULTS REGIONAL GROUNDWATER MONITORING - WATER YEAR 2021-2022 Page 4 of 22

			ype		Change	dler #3	
Constituents	Units	MCL	MCL Type	Zor 4/14/2022	ne 1 9/8/2022	Zon 4/14/2022	ne 2 9/8/2022
General Minerals							
Alkalinity	mg/l			370	360	370	360
Anion Sum	meq/l			13	13	16	16
Bicarbonate as HCO3 Boron	mg/l mg/l	1	N	450 0.21	440 0.2	460 0.27	440 0.26
Bromide	ug/l	1	IN	ND	ND	ND	ND
Calcium, Total	mg/l			96.9	95.3	146	156
Carbon Dioxide	mg/l			341	325	372	341
Carbonate as CO3	mg/l			ND	ND	ND	ND
Cation Sum	meq/l			12	12	16	16
Chloride	mg/l	500	S	150	150	240	220
Fluoride	mg/l	2	P	0.19	0.19	0.14	ND
Hydroxide as OH, Calculated	mg/l			ND	ND	ND	ND
Iodide	ug/l			76	68	13	ND
Nitrate (as NO3)	mg/l	45	P	ND	ND	52	57
Nitrate as Nitrogen	mg/l	10	P	ND	ND	12	13
Nitrite, as Nitrogen	mg/l	1	P	ND	ND	ND	ND
Potassium, Total	mg/l			5.2	4.5	5.2	4.8
Sodium, Total	mg/l	500	C	120	110	110	110
Sulfate Total Dissolved Solid (TDS)	mg/l	1000	S	45 670	48 700	55 910	59 1100
Nitrate + Nitrite, as Nitrogen	mg/l	1000	P	670 ND	ND	12	13
General Physical Properties	mg/l	10	ľ	ND	ND	12	13
Apparent Color	ACU	15	S	3	5	ND	ND
Hardness (Total, as CaCO3)	mg/l	13	U	355	346	544	574
Lab pH	Units			7.61	7.9	7.23	7.49
Langelier Index - 25 degree	None			0.663	0.929	0.424	0.676
Odor	TON	3	S	ND	ND	ND	ND
Specific Conductance	ımho/cn			1200	1200	1700	1700
Turbidity	NTU	5	S	0.85	0.95	0.5	0.3
Metals							
Aluminum, Total	ug/l	1000	P	ND	ND	ND	ND
Antimony, Total	ug/l	6	P	ND	ND	ND	ND
Arsenic, Total	ug/l	10	P	2.8	2.4	1.6	1.5
Barium, Total	ug/l	1000	P	28	27	140	150
Beryllium, Total	ug/l	4	P	ND	ND	ND	ND
Cadmium, Total	ug/l	5	P	ND	ND	ND	ND
Chromium, Total	ug/l	50	P	ND	ND	1.4	1.7
Hexavalent Chromium (Cr VI)	ug/l	10	P	ND	ND	ND	1.8
Copper, Total	ug/l	1300		ND	ND	0.71	0.7
Iron, Total Lead, Total	mg/l	0.3	S	0.23	0.21	ND ND	ND ND
Magnesium, Total	ug/l	15	P	ND 27.4	ND 26.1	43.3	44.8
Manganese, Total	mg/l ug/l	50	S	76	74	9.6	9.1
Mercury	ug/l	2	P	ND	ND	ND	ND
Nickel, Total	ug/l	100	P	ND	ND	120	160
Selenium, Total	ug/l	50	P	ND	ND	13	14
Silver, Total	ug/l	100		ND	ND	ND	ND
Thallium, Total	ug/l	2	P	ND	ND	ND	ND
Zinc, Total	ug/l	5000	S	ND	ND	ND	ND
Volatile Organic Compounds							
1,1-Dichloroethane	ug/l	5	P	ND	ND	ND	ND
1,1-Dichloroethylene	ug/l	6	P	ND	ND	ND	ND
1,2-Dichloroethane	ug/l	0.5		ND	ND	ND	ND
Benzene	ug/l	1	P	ND ND	ND ND	ND ND	ND ND
Carbon Tetrachloride	ug/l	0.5		ND ND	ND ND	ND ND	ND ND
Chlorobenzene Chloromethana (Mathyl Chlorida)	ug/l	70	P	ND ND	ND 0.54	ND ND	ND
Chloromethane (Methyl Chloride)	ug/l	6	P	ND ND	0.54 ND	ND ND	0.53 ND
cis-1,2-Dichloroethylene	ug/l	6	P	ND ND	ND ND	ND ND	ND ND
Di-Isopropyl Ether Ethylbenzene	ug/l ug/l	300	P	ND ND	ND ND	ND ND	ND ND
Ethyl Tert Butyl Ether	ug/l	200	1	ND ND	ND ND	ND ND	ND ND
Freon 11	ug/l	150	P	ND ND	ND ND	ND ND	ND ND
Freon 113	ug/l	1200		ND ND	ND ND	ND ND	ND ND
Methylene Chloride	ug/l	5		ND	ND	ND ND	ND
MTBE	ug/l	13	P	ND	ND	ND ND	ND
Styrene	ug/l	100		ND	ND	ND ND	ND
Tert Amyl Methyl Ether	ug/l			ND	ND	ND	ND
TBA	ug/l	12	N				
Tetrachloroethylene (PCE)	ug/l	5	P	ND	ND	ND	ND
Toluene	ug/l	150		ND	ND	ND	ND
Total Trihalomethanes	ug/l	80	P	ND	ND	ND	ND
trans-1,2-Dichloroethylene	ug/l	10	P	ND	ND	ND	ND
Trichloroethylene (TCE)	ug/l	5	P	ND	ND	ND	ND
Vinyl chloride (VC)	ug/l	0.5		ND	ND	ND	ND
Xylenes (Total)	ug/l	1750	P	ND	ND	ND	ND
Others		<u> </u>	Ļ	V.	\ <u></u>	N=	
1,4-Dioxane	ug/l	1	N	ND ND	ND ND	ND	ND
Perchlorate	ug/l	6	P	ND ND	ND ND	2.6	3.5
Surfactants	mg/l	0.5	S	ND	ND	ND	ND
Total Organic Carbon	mg/l	l		1.3	1.3	0.76	0.65

TABLE 3.2 WEST COAST BASIN WATER QUALITY RESULTS REGIONAL GROUNDWATER MONITORING - WATER YEAR 2021-2022 Page 5 of 22

			ype					ena #1			
Constituents	Units	MCL	MCL Type	Zor 4/20/2022	ne 1 9/6/2022	Zor 4/20/2022	ne 2 9/6/2022	Zor 4/20/2022	ne 3 9/6/2022	Zor 4/20/2022	ne 4 9/6/2022
General Minerals											
Alkalinity	mg/l			280	270	190	190	170	170	250	250
Anion Sum Bicarbonate as HCO3	meq/l mg/l			6.1 340	330	5.2 240	5.1 230	5.6 210	5.5 200	31 300	34 300
Boron	mg/l	1	N	0.33	0.34	0.13	0.13	0.12	0.12	0.14	0.14
Bromide	ug/l		1	0.12	ND	0.11	ND	0.097	ND	ND	ND
Calcium, Total	mg/l		H	12.9	13.4	45.6	46.7	50	51.6	332	327
Carbon Dioxide	mg/l			248	238	174	169	155	148	255	230
Carbonate as CO3	mg/l			ND							
Cation Sum	meq/l			5.4	5.5	5	5.2	5.2	5.3	31	30
Chloride	mg/l	500	S	20	20	35	37	24	24	810	890
Fluoride	mg/l	2	P	0.17	0.17	0.37	0.38	0.35	0.36	0.12	ND
Hydroxide as OH, Calculated	mg/l			ND	ND	ND 26	ND	ND 25	ND	ND	ND
Nitrate (as NO3)	ug/l mg/l	45	P	33 ND	27 ND	26 ND	24 ND	25 ND	23 ND	ND 100	ND 120
Nitrate as Nitrogen	mg/l	10	P	ND ND	ND ND	ND ND	ND ND	ND ND	ND	23	27
Nitrite, as Nitrogen	mg/l	1	P	ND							
Potassium, Total	mg/l		Ė	11	12	3.7	3.6	3.3	3.2	8.1	7.9
Sodium, Total	mg/l		\Box	89	92	42	44	39	40	130	130
Sulfate	mg/l	500	S	0.26	ND	16	13	70	70	82	78
Total Dissolved Solid (TDS)	mg/l	1000		300	350	280	310	300	340	2200	2800
Nitrate + Nitrite, as Nitrogen	mg/l	10	P	ND	ND	ND	ND	ND	ND	23	27
General Physical Properties											
Apparent Color	ACU	15	S	22	20	ND	ND	ND	ND	ND	ND
Hardness (Total, as CaCO3)	mg/l		Ш	60.3	61.6	154	157	170	174	1270	1240
Lab pH	Units	لسا		8.07	8.24	7.91	8.09	7.89	8.08	7.11	7.53
Langelier Index - 25 degree	None			0.207	0.363	0.433	0.614	0.399	0.591	0.366	0.742
Odor	TON	3	S	2	ND	8	4	1	ND 550	1	ND
Specific Conductance	amho/cn			560	600	500	530	500	550	3600	3800
Turbidity	NTU	5	S	1	2.2	0.65	1.2	0.2	2.9	0.45	4.8
Metals Aluminum, Total	/1	1000	D	ND	ND	NID	NID	NID	NID	NID	ND
	ug/l	1000	P P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 0.12	ND ND
Antimony, Total Arsenic, Total	ug/l ug/l	10	P	15	15	ND ND	ND ND	0.14	ND ND	0.12	ND ND
Barium, Total	ug/l	1000		15	15	40	40	38	41	430	410
Beryllium, Total	ug/l	4	P	ND							
Cadmium, Total	ug/l	5	P	ND							
Chromium, Total	ug/l	50	P	0.23	0.26	0.15	ND	0.16	ND	8.1	8.3
Hexavalent Chromium (Cr VI)	ug/l	10	P	0.0087	0.085	0.065	0.065	ND	0.05	8.8	9.4
Copper, Total	ug/l	1300		ND	ND	ND	ND	ND	2.2	0.25	ND
Iron, Total	mg/l	0.3	S	0.15	0.15	0.016	ND	0.057	0.066	0.0069	ND
Lead, Total	ug/l	15	P	ND							
Magnesium, Total	mg/l			6.8	6.84	9.87	9.8	11	11	107	102
Manganese, Total	ug/l	50	S	39	39	36	38	50	52	0.54	ND
Mercury	ug/l	2	P	ND							
Nickel, Total	ug/l	100	P	0.27	ND	ND	ND	0.19	ND	1.5	ND
Selenium, Total	ug/l	50	P	ND	ND	ND	ND	ND	ND	2.3	2.3
Silver, Total	ug/l	100	S	ND							
Thallium, Total Zinc, Total	ug/l ug/l	5000	P	ND ND							
Volatile Organic Compounds	ug/1	3000	٥	ND							
1,1-Dichloroethane	ug/l	5	P	ND	ND	ND	ND	ND	ND	0.29	ND
1,1-Dichloroethylene	ug/l	6	P	ND							
1,2-Dichloroethane	ug/l	0.5	P	ND							
Benzene	ug/l	1	P	ND							
Carbon Tetrachloride	ug/l	0.5	P	ND							
Chlorobenzene	ug/l	70	P	ND							
Chloromethane (Methyl Chloride)	ug/l			ND							
cis-1,2-Dichloroethylene	ug/l	6	P	ND							
Di-Isopropyl Ether	ug/l			ND							
Ethylbenzene	ug/l	300	P	ND							
Ethyl Tert Butyl Ether	ug/l	احجا	ليا	ND							
Freon 11	ug/l	150	P	ND							
Freon 113	ug/l	1200		ND	ND ND	ND	ND	ND	ND	ND	ND
Methylene Chloride MTBE	ug/l	5	P P	ND ND	ND						
Styrene Styrene	ug/l ug/l	13		ND ND							
Tert Amyl Methyl Ether	ug/l	100	ır	ND ND							
TBA	ug/l ug/l	12	N	ND							
Tetrachloroethylene (PCE)	ug/l	5	P	ND	ND	ND	ND	ND	ND	0.27	ND
Toluene	ug/l	150	P	ND							
Total Trihalomethanes	ug/l	80	P	ND	ND	ND	ND	ND	ND	0.59	0.53
trans-1,2-Dichloroethylene	ug/l	10	P	ND							
Trichloroethylene (TCE)	ug/l	5	P	ND							
Vinyl chloride (VC)	ug/l	0.5	P	ND							
Xylenes (Total)	ug/l	1750		ND							
Others			П								
1,4-Dioxane	ug/l	1	N	ND	ND	ND	ND	ND	ND	0.07	0.084
		-	n	NID	NID	NID	N.TD	ND	ND	8.4	7.4
Perchlorate	ug/l	6	P	ND	ND	ND	ND				
Perchlorate Surfactants Total Organic Carbon	mg/l mg/l	0.5	S	0.036 2.3	ND ND 2.1	0.017 0.76	ND ND 0.49	0.016 0.47	ND 0.33	0.019 1.1	ND 0.92

TABLE 3.2 WEST COAST BASIN WATER QUALITY RESULTS REGIONAL GROUNDWATER MONITORING - WATER YEAR 2021-2022 Page 6 of 22

			ype					Gardo	ena #2				
Constituents	Units	MCL	MCL Type	Zor 5/2/2022	ne 1 9/9/2022	Zor 5/2/2022	ne 2 9/9/2022	Zoi 5/2/2022	ne 3 9/9/2022	Zor 5/2/2022	ne 4 9/9/2022	Zor 5/2/2022	ne 5 9/9/2022
General Minerals	1	~	~	31212022	31312022	31212022	31312022	31212022	31312022	31212022	91912022	31212022	31312022
Alkalinity	mg/l			290	290	180	180	180	180	180	170	190	200
Anion Sum	meq/l			6.3	6.1	5.7	5.7	5.6	5.6	4.2	4.1	5.5	5.5
Bicarbonate as HCO3	mg/l		NT.	360	340	220	210	220	210	210	210	240	240
Boron Bromide	mg/l	1	N	0.32 ND	0.31 ND	0.16 ND	0.15 ND	0.14 ND	0.13 ND	0.1 ND	0.1 ND	0.13 ND	0.13 ND
Calcium, Total	ug/l mg/l			16	15.4	42.4	41.4	50.5	48.7	30.3	28.9	50.8	50
Carbon Dioxide	mg/l			259	252	162	156	163	156	158	152	174	173
Carbonate as CO3	mg/l			ND	ND								
Cation Sum	meq/l			5.8	5.8	5.5	5.4	5.4	5.3	4.1	3.9	5.4	5.3
Chloride	mg/l	500	S	15	15	24	24	24	24	23	23	55	56
Fluoride	mg/l	2	P	0.22	0.21	0.24	0.23	0.34	0.32	0.25	0.24	0.26	0.25
Hydroxide as OH, Calculated	mg/l			ND	ND								
Iodide	ug/l			27	28	23	19	20	20	22	21	21	23
Nitrate (as NO3)	mg/l	45	P	ND	ND								
Nitrate as Nitrogen	mg/l	10	P	ND	ND								
Nitrite, as Nitrogen	mg/l	1	P	ND	ND	ND	ND	ND	ND 4.2	ND 2.5	ND	ND 2.2	ND 2.4
Potassium, Total Sodium, Total	mg/l			6.1 100	100	6.5 49	6.4 48	4.2	4.2	3.5 40	3.4 40	3.3 43	3.4 43
Sulfate	mg/l mg/l	500	S	ND	ND	70	72	62	65	ND	ND	1.1	1.8
Total Dissolved Solid (TDS)	mg/l mg/l	1000	S	360	330	320	330	320	310	220	220	300	280
Nitrate + Nitrite, as Nitrogen	mg/l	1000	P	ND	ND								
General Physical Properties	.11g/1	10	-	110	1,0	1,0	TID.	TID.	1,0	1,0	110	1,12	11.10
Apparent Color	ACU	15	S	25	20	ND	3	ND	3	7.5	3	4	3
Hardness (Total, as CaCO3)	mg/l			64.2	62.6	161	159	174	169	111	107	170	169
Lab pH	Units			8.12	8.33	7.91	8.12	7.9	8.1	7.91	8.12	7.96	8.16
Langelier Index - 25 degree	None	L		0.349	0.55	0.367	0.563	0.433	0.619	0.252	0.416	0.524	0.745
Odor	TON	3	S	ND	ND	ND	4	ND	ND	2	ND	4	10
Specific Conductance	amho/cr	1600		560	600	550	570	510	550	400	420	540	560
Turbidity	NTU	5	S	0.1	0.5	ND	ND	ND	0.1	ND	0.1	ND	0.1
Metals													
Aluminum, Total	ug/l	1000	_	ND	ND								
Antimony, Total	ug/l	6	P	ND	ND								
Arsenic, Total	ug/l	10	P	ND	ND	ND	ND	ND	ND	0.43	ND	ND	ND
Barium, Total	ug/l	1000	P	20	21	19	19	21	21	35	35	95	99
Beryllium, Total	ug/l	4	P	ND	ND								
Cadmium, Total	ug/l	5	P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 0.55	ND ND
Chromium, Total	ug/l	50 10	P P	0.081	0.17	0.043	0.12	0.059	0.12	0.041	0.12	0.028	0.04
Hexavalent Chromium (Cr VI) Copper, Total	ug/l ug/l	1300	P	ND	ND	ND	ND	0.039 ND	ND	0.041 ND	ND	0.028 ND	ND
Iron, Total	mg/l	0.3	S	0.031	0.03	0.038	0.035	0.041	0.036	0.075	0.07	ND	ND
Lead, Total	ug/l	15	P	ND	ND								
Magnesium, Total	mg/l	13	1	5.9	5.83	13.5	13.5	11.7	11.5	8.55	8.35	10.6	10.6
Manganese, Total	ug/l	50	S	25	26	26	26	33	33	45	46	43	42
Mercury	ug/l	2	P	ND	ND								
Nickel, Total	ug/l	100	P	ND	ND								
Selenium, Total	ug/l	50	P	ND	ND								
Silver, Total	ug/l	100	S	ND	ND								
Thallium, Total	ug/l	2	P	ND	ND								
Zinc, Total	ug/l	5000	S	ND	ND								
Volatile Organic Compounds													
1,1-Dichloroethane	ug/l	5	P	ND	ND								
1,1-Dichloroethylene	ug/l	6	P	ND	ND								
1,2-Dichloroethane	ug/l	0.5	P	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Benzene Carbon Tatrachlarida	ug/l	0.5	P P	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Carbon Tetrachloride Chlorobenzene	ug/l ug/l	70	P	ND ND	ND ND								
Chloromethane (Methyl Chloride)	ug/l	70		ND	0.63	ND	ND	ND	ND	ND	ND	ND	0.67
cis-1,2-Dichloroethylene	ug/l	6	P	ND	ND								
Di-Isopropyl Ether	ug/l	Ť		ND	ND								
Ethylbenzene	ug/l	300	P	ND	ND								
Ethyl Tert Butyl Ether	ug/l			ND	ND								
Freon 11	ug/l	150	P	ND	ND								
Freon 113	ug/l	1200	P	ND	ND								
Methylene Chloride	ug/l	5	P	ND	ND								
MTBE	ug/l	13	P	ND	ND								
Styrene	ug/l	100	P	ND	ND								
Tert Amyl Methyl Ether	ug/l			ND	ND								
TBA	ug/l	12	N										
Tetrachloroethylene (PCE)	ug/l	5	P	ND	ND								
Toluene	ug/l	150	P	ND	ND								
Total Trihalomethanes	ug/l	80	P	ND	ND								
trans-1,2-Dichloroethylene	ug/l	10	P	ND	ND								
Trichloroethylene (TCE)	ug/l	5	P	ND	ND								
Vinyl chloride (VC)	ug/l	0.5	P P	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Xylenes (Total)	ug/l	1750	ľ	ND	ND								
Others 1,4-Dioxane	ug/l	1	N	ND	ND								
Perchlorate	,	6	P	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND
i cicinorate	ug/l	6											
Surfactants	mg/l	0.5	S	ND	ND								

TABLE 3.2 WEST COAST BASIN WATER QUALITY RESULTS REGIONAL GROUNDWATER MONITORING - WATER YEAR 2021-2022 Page 7 of 22

General Minerals				ype				orne #1		
General Minerals	Constituents	Units	MCL	MCL Type						
Auson Semin (med) 1 15 15 15 10 7-79 11 32 380 380 380 480 380 380 480 380 380 380 480 380										
Simplement and RCO3										
Second										
			1	M		810				
Cáchong Frodd			1	IN		I ND				
Carbon C										
Carbonate across mage ND										
Camer Sons										
Chaotie										
Flooring Property		500	S							
Indeposition 2011, Calculated mge				P					0.26	
Nime (a NO3)	Hydroxide as OH, Calculated				ND	ND	ND	ND		ND
Nome as Nurregers mge 10 P ND ND ND ND ND ND ND		ug/l								
Norte, as, Norrogen				_						
National Total mgl										
Soltons, Total mgl			1	P						
Solition										,
Total Dissolved Solid (TDS) mg 1000 S ND										
Note										
General Physical Properties										
Apparent Color		mg/I	10	P	ND	ND	ND	ND	ND	ND
Handress (Total as CaCO3)		ACII	15	C	200	250	25	20	2	2
Abp			13	3						
Langelier Index - 22 degree										
Object										
Specific Conductance mboc/cn fool S 1500 1400 940 750 1400 2400 2400 Metals NT S S ND 0.35 ND 0.45 Metals ND ND ND ND ND ND ND N			3	S						
Turbidity				_						
Alaminum, Total										
Antimony, Total 19g8 0 P ND ND ND ND ND ND ND	Metals									
Assenic, Total Ugil 100 P ND 0.51 ND ND ND 1.4	Aluminum, Total	ug/l	1000	P	ND	ND	ND	ND	ND	ND
Barium Total		ug/l	6	P	ND	ND	ND	ND	ND	ND
Beryllum_Total ug/l 4 P ND ND ND ND ND ND ND	Arsenic, Total	ug/l	10	P	ND	0.51	ND	ND	ND	1.4
Cadmium, Total	Barium, Total	ug/l	1000	P	32	35	34	29	120	53
Chromium, Total ugf 50 P 0.67 1.6 ND ND ND ND ND ND ND N	Beryllium, Total	ug/l	4	P		ND	ND	ND	ND	ND
Hexavalent Chromium (Cr VI)										
Copper, Total ug/l 1300 P 1										
Inon, Total										
Lend, Total		_								
Magnasium, Total mg/l										
Manganse, Total			15	Р						
Mercury ug/l 2 P ND ND ND ND O.055 ND ND ND Nickel, Total ug/l 100 P ND ND ND ND ND ND ND			50	C						
Nickel, Total Ug/l 100 P ND ND ND ND ND ND ND	•	_								
Selemin, Total ug/l 50 P ND ND ND ND ND ND ND										
Silver, Total		_								
Thallium, Total				_						
Zinc, Total										
Volatile Organic Compounds				_						
I.1-Dichloroethane										
IL2-Dichloroethane		ug/l	5	P	ND	ND	ND	ND	ND	ND
Benzene				P						
Carbon Tetrachloride	1,2-Dichloroethane	ug/l	0.5	P	ND		ND		ND	ND
Chlorobenzene		ug/l								
Chloromethane (Methyl Chloride) ug/l ND ND ND ND ND ND ND										
cis-1,2-Dichloroethylene ug/l 6 P ND ND ND ND ND 2.8 Di-Isopropyl Ether ug/l ug/l ND N		_	70	P						
Di-Isopropyl Ether		_		Ļ						
Ethylbenzene ug/l 300 P ND		_	6	P						
Ethyl Tert Butyl Ether			200	Ļ						
Freon 1			300	Р						
Freon 113			150	ъ						
Methylene Chloride										
MTBE ug/l 13 P ND ND ND ND ND ND 160 Styrene ug/l 100 P ND										
Styrene		_		_						
Tert Amyl Methyl Ether										
TBA			100	Г						
Tetrachloroethylene (PCE)			12	N	ND	ND	ND	ND	ND	ND
Toluene				_	ND	ND	ND	ND	ND	ND
Total Trihalomethanes										
trans-1,2-Dichloroethylene ug/l 10 P ND 0.45 Perchlorate ug/l 6 P ND ND ND ND ND ND 0.69 Surfactants mg/l 0.5 S 0.05 ND 0.054 ND ND ND 0.054		_								
Trichloroethylene (TCE)										
Vinyl chloride (VC) Ug/l 0.5 P ND ND ND ND ND ND ND		_								
Xylenes (Total) Ug/l 1750 P ND ND ND ND ND ND ND										
Others I,4-Dioxane ug/l 1 N ND ND ND ND ND ND 0.45 Perchlorate ug/l 6 P ND ND ND ND ND ND ND 0.69 Surfactants mg/l 0.5 S 0.05 ND 0.054 ND ND ND 0.054										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						_		-	-	
Perchlorate ug/l 6 P ND ND ND ND ND ND 0.69 Surfactants mg/l 0.5 S 0.05 ND 0.054 ND ND 0.054		ug/l	1	N	ND	ND	ND	ND	ND	0.45
Surfactants mg/l 0.5 S 0.05 ND 0.054 ND ND 0.054		_	6							
Total Organic Carbon mg/l 8.6 9.5 3.9 2.7 1.5 1.9		_								

TABLE 3.2 WEST COAST BASIN WATER QUALITY RESULTS REGIONAL GROUNDWATER MONITORING - WATER YEAR 2021-2022 Page 8 of 22

			ype					Inglew	ood #1				
Constituents	Units	MCL	MCL Type	Zor 3/24/2022	ne 1 8/25/2022	Zoi 3/24/2022	ne 2 8/25/2022		ne 3 8/25/2022	Zo: 3/24/2022	ne 4 8/25/2022	Zo: 3/24/2022	ne 5 8/25/2022
General Minerals	1	_	Z	3/24/2022	8/23/2022	3/24/2022	8/23/2022	3/24/2022	8/23/2022	3/24/2022	8/23/2022	3/24/2022	8/23/2022
Alkalinity	mg/l			1500	1400	860	870	350	350	240	240	260	270
Anion Sum	meq/l			78	72	29	28	24	23	16	16	24	24
Bicarbonate as HCO3	mg/l		N.	1800	1700	1100	1100	430	420	300	300	320	340
Boron	mg/l	1	N	10	9.5	2.2	2.1	0.49	0.5	0.2	0.2	0.23	0.48
Bromide Calcium, Total	ug/l mg/l			16 37.5	15 38.3	ND 50.2	ND 48.6	3.7 161	3.7 154	1.1 129	1.2 125	ND 197	ND 151
Carbon Dioxide	mg/l			1350	1240	775	776	319	315	222	220	248	253
Carbonate as CO3	mg/l			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cation Sum	meq/l			72	66	27	27	23	22	16	15	22	21
Chloride	mg/l	500	S	1700	1600	410	370	460	450	310	320	540	540
Fluoride	mg/l	2	P	ND	ND	ND	ND	ND	ND	0.32	0.33	ND	ND
Hydroxide as OH, Calculated	mg/l			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Iodide	ug/l			5000	4700	450	360	860	850	79	92	ND	ND
Nitrate (as NO3)	mg/l	45	P	ND	ND	ND	ND	ND	ND	ND	ND	47	56
Nitrate as Nitrogen	mg/l	10	P	ND	ND	ND	ND	ND	ND	ND	ND	11	13
Nitrite, as Nitrogen	mg/l	1	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Potassium, Total	mg/l			48	50	22	23	9.9	10	11	11	9.8	9.8
Sodium, Total	mg/l	500	C	1500	1400	520	500	210	200	100	100	150	200
Sulfate Total Dissolved Solid (TDS)	mg/l	500 1000	S	ND 4200	14 4000	ND 1600	ND 1600	180 1300	180 1400	120 960	120 1000	130 1500	130 1600
Total Dissolved Solid (TDS) Nitrate + Nitrite, as Nitrogen	mg/l mg/l	1000	P	4200 ND	4000 ND	ND	ND	ND	1400 ND	960 ND	1000 ND	1500	1600
General Physical Properties	mg/I	10	r	ND	ND	ND	ND	עאו	ND	ND	ND	11	13
Apparent Color	ACU	15	S	350	350	200	200	15	10	7.5	7.5	ND	ND
Hardness (Total, as CaCO3)	mg/l	13	٥	219	215	218	209	659	633	536	518	784	619
Lab pH	Units			7.97	8.1	7.95	8.02	7.73	7.86	7.78	7.9	7.52	7.67
Langelier Index - 25 degree	None			0.956	1.07	0.969	1.03	0.895	0.995	0.725	0.826	0.623	0.665
Odor	TON	3	S	4	8	2	4	ND	ND	ND	ND	ND	ND
Specific Conductance	ımho/cn	1600		6900	6900	2900	2800	2500	2600	1700	1700	2500	2700
Turbidity	NTU	5	S	ND	0.15	1.1	2.5	2.8	2.5	1.6	1.7	0.1	ND
Metals													
Aluminum, Total	ug/l	1000	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Antimony, Total	ug/l	6	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Arsenic, Total	ug/l	10	P	0.51	0.48	8.2	7.7	ND	ND	ND	ND	0.45	ND
Barium, Total	ug/l	1000	P	150	120	98	89	60	54	140	130	150	54
Beryllium, Total	ug/l	4	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cadmium, Total	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chromium, Total	ug/l	50	P	1	0.9	0.81	0.79	ND	ND	ND	ND	0.22	ND
Hexavalent Chromium (Cr VI)	ug/l	10	P	ND	ND	0.071	ND	ND	ND	ND	ND	0.34	0.15
Copper, Total	ug/l	1300	P	ND	ND	0.69	ND	ND	ND	ND	ND	1.1	ND
Iron, Total	mg/l	0.3	S	1.3	0.87	1	1.1	0.58	0.56	0.43	0.42	ND	0.55
Lead, Total	ug/l	15	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Magnesium, Total	mg/l			30.5	29	22.5	21.4	62.5	60.1	51.9	50.3	70.9	58.8
Manganese, Total	ug/l	50	S	31	32	63	53	410	380	250	240	2.7	370
Mercury	ug/l	2	P	ND	ND	0.051	ND	ND	ND	0.057	ND	0.058	ND
Nickel, Total	ug/l	100	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Selenium, Total	ug/l	50	P	0.7	0.42	ND	ND	ND	ND	ND	ND	5.4	ND
Silver, Total	ug/l	100	S	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Thallium, Total	ug/l	5000	P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Zinc, Total Volatile Organic Compounds	ug/l	3000	S	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	no/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethylene	ug/l ug/l	6	P	ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND
1,2-Dichloroethane	ug/l	0.5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzene	ug/l	1	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Tetrachloride	ug/l	0.5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	ug/l	70	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloromethane (Methyl Chloride)	ug/l	Ė		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethylene	ug/l	6	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Di-Isopropyl Ether	ug/l			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	ug/l	300	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethyl Tert Butyl Ether	ug/l			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Freon 11	ug/l	150	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Freon 113	ug/l	1200		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene Chloride	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MTBE	ug/l	13	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Styrene	ug/l	100	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tert Amyl Methyl Ether	ug/l			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TBA	ug/l	12	N										
Tetrachloroethylene (PCE)	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.67
Toluene	ug/l	150	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total Trihalomethanes	ug/l	80	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.59
trans-1,2-Dichloroethylene	ug/l	10	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethylene (TCE)	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND	1.6	2.6
Vinyl chloride (VC)	ug/l	0.5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Xylenes (Total)	ug/l	1750	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Others		1	XY.	NID	NID.	NID.	NID.	MD	MD	0.75	,	0.11	0.10
1,4-Dioxane	ug/l	1	N	ND	ND	ND	ND	ND	ND	0.75	1	0.11	0.18
Perchlorate	ug/l	6	P	ND 0.064	ND	ND	ND	ND	ND	ND	ND	3.1	3.3
Surfactants	mg/l	0.5	S	0.064	ND	ND 17	ND	ND	ND	ND	ND 0.02	ND 0.70	ND 0.64
Total Organic Carbon	mg/l	1		72	66	17	15	1.8	1.7	1.3	0.82	0.78	0.64

TABLE 3.2 WEST COAST BASIN WATER QUALITY RESULTS REGIONAL GROUNDWATER MONITORING - WATER YEAR 2021-2022 Page 9 of 22

Constitution				2					ge 9 01		Inglew	and #3						
General Millerian	Constituents	nits	CL	CL Ty						ne 3	Zor	ne 4	Zoı					
Adamon A	Conoral Minorals	U	Σ	Ž	3/30/2022	8/31/2022	3/30/2022	8/31/2022	3/30/2022	8/31/2022	3/30/2022	8/31/2022	3/30/2022	8/31/2022	3/30/2022	8/31/2022	3/30/2022	8/31/2022
Accord A		mg/l			710	690	1100	1100	570	550	800	780	460	450	210	200	240	230
Secure																		
District	Bicarbonate as HCO3	mg/l				840												
Calemon Create may 1		_	1	N														
Common C																		
Carbonatis (CO)		_																
Colone Section Colone																		
Chloride																		
			500	S														
Security Control Con		mg/l	2	P														
State (a. NO3)		_																
Simple of Ministers Minist		·	4.5	D														_
Nome, as Nimogen	`			_														
Negations Total Color				_														
Scalent (1004) Scalen		_	Ť	Ė														
Total Devolved Solid (TIPS) mgt 1000 S 2400 2700 1800 1600 1600 070 710 900 990 640 640 640 490 1100 1100		Ŭ																
Notes Printing as Nirrogene mg 0 P ND ND ND ND ND ND ND		mg/l																
General Physical Properties Compared Physical Properties Compared Note				_														
Apparent Cohe ACU 15 S 200 200 1600 1200 300 300 300 300 350 350 35 35		mg/l	10	P	ND													
Harbasse (Total, as CaCO3)		ACII	15	C	200	200	1600	1200	300	350	600	750	25	35	2	1	1	ND
Lab pH			13	3														
Langelier Index-25 degree																		
Specific Conductance		None			0.377	0.57	0.57	0.736	0.169	0.312	0.452		0.643	0.951	0.485	0.709		0.946
Inhelity																		
Metals								2200										
Aluminum, Total ugl 1009 P ND ND ND ND ND ND ND	•	NTU	5	S	0.1	0.6	ND	1	0.15	0.2	0.1	0.3	ND	0.15	ND	0.15	0.4	0.45
Antimorn, Total		110/1	1000	D	ND	ND	ND	ND	22	ND	25	2.1	ND	ND	ND	ND	ND	ND
Assensis, Total 0gl 10 P 1.2 1.3 0.96 0.91 1.6 1.5 2.6 2.7 ND ND 0.51 0.5 1.6 1.2 Berlum, Total 0gl 1000 P 0.2 59 2.5 2.6 14 13 4.3 4.4 58 8.8 77 7.6 2.60 2.0 Berlum, Total 0gl 4 P ND ND ND ND ND ND ND		·		_														
Bartum, Total				_														
Cadmium, Total		·																260
Chromium, Total	Beryllium, Total	ug/l		P						ND								
Hexavalent Chromium (CTVI) ug/l 100 P ND ND 0.23 ND 0.22 ND 0.26 ND ND ND ND ND ND ND N																		
Copper_Crotal ug/l 1300 P 0.55 ND 4.3 3.4 1.7 1.5 2.1 1.8 ND ND ND ND ND ND ND N		·		_														
				_														
Lead, Total				_														
Magnesium, Total																		
Mercury ug/1 2 P ND ND ND ND ND ND ND		·																
Nickel, Total ug/l 100 P ND ND ND ND ND ND ND	Manganese, Total	ug/l		S			22			21								
Selemium, Total																		
Silver, Total		·		_														
Thallium, Total				_														
Zinc, Total Ug/1 5000 S ND ND ND ND ND ND ND	· · · · · · · · · · · · · · · · · · ·	·		_														
Volatile Organic Compounds	,			_														
II-Dichloroethylene																		
1.2-Dichloroethane	1,1-Dichloroethane	ug/l	5															
Benzene																		
Carbon Tetrachloride		- 0																
Chlorobenzene		_		_														
Chloromethane (Methyl Chloride)				_														
cis-1,2-Dichloroethylene ug/l 6 P ND N		_		Ė														
Ethylbenzene	cis-1,2-Dichloroethylene		6	P	ND	42	39											
Ethyl Tert Butyl Ether																		
Freon 1		_	300	P														
Freon 113		·	150	п														
Methylene Chloride		_																
MTBE ug/l 13 P ND				_														
Styrene Ug/l 100 P ND ND ND ND ND ND ND				_														
TBA	Styrene				ND													
Tetrachloroethylene (PCE)				Ļ	ND													
Toluene		_		_	3.775	N.T.	N.T.	N.T.	NTP	3.77	3.775	3.77	3.77	3.TF	3.77	N.TP	N TP	3.77*
Total Trihalomethanes																		
trans-1,2-Dichloroethylene ug/l 10 P ND ND <t< td=""><td></td><td>_</td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		_		_														
Trichloroethylene (TČE) ug/l 5 P ND ND ND ND ND ND ND				_														
Vinyl chloride (VC)		_		_														
Others ug/l 1 ND ND <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Xylenes (Total)			P	ND		ND	ND			ND							
Perchlorate ug/l 6 P ND ND ND ND ND ND ND																		
Surfactants mg/l 0.5 S 0.054 ND 0.057 ND 0.22 0.23		·	1	_														
	Total Organic Carbon	mg/l mg/l	0.5	3	22	20	67	63	6.3	6.7	12	ND 14	3.4	3.5	1.5	1.3	4.8	4.6

TABLE 3.2 WEST COAST BASIN WATER QUALITY RESULTS REGIONAL GROUNDWATER MONITORING - WATER YEAR 2021-2022 Page 10 of 22

			'pe				age 10		Lawno	lale #1					
Constituents	Units	MCL	MCL Type	Zor 4/29/2022	ne 1 8/30/2022	Zoi 4/29/2022	ne 2 8/30/2022	Zoi 4/29/2022			ne 4 8/30/2022	Zoi 4/29/2022	ne 5 8/30/2022	Zoi 4/29/2022	ne 6 8/30/2022
General Minerals	1	~	2	4/29/2022	8/30/2022	4/29/2022	8/30/2022	4/29/2022	8/30/2022	4/29/2022	8/30/2022	4/29/2022	8/30/2022	4/29/2022	8/30/2022
Alkalinity	mg/l			470	460	610	600	250	240	200	200	190	190	300	270
Anion Sum	meq/l			9.9	9.7	13	13	5.7	5.6	7.1	7	7.3	7.2	26	28
Bicarbonate as HCO3	mg/l			570	550	750	720	300	290	240	240	240	230	360	330
Boron	mg/l	1	N	0.85	0.87	1.1	1.1	0.18	0.2	0.12	0.12	0.1	0.11	0.28	0.27
Bromide	ug/l			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Calcium, Total	mg/l			11.1	11	4.57	4.71	17.8	18.6	58.6	59.6	55.4	56.5	231	224
Carbon Dioxide Carbonate as CO3	mg/l		-	416	9.3	545	530	220	210	180 ND	174	175	169 ND	288	251 ND
Cation Sum	mg/l meq/l			ND 9.2	9.3	ND 12	9.5 12	ND 5.3	ND 5.5	6.7	ND 6.8	ND 6.8	6.9	ND 26	25
Chloride	mg/l	500	S	17	17	35	35	28	27	69	68	72	73	590	640
Fluoride	mg/l	2	P	0.37	0.38	0.24	0.23	0.3	0.29	0.33	0.33	0.37	0.36	0.17	ND
Hydroxide as OH, Calculated	mg/l		-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Iodide	ug/l			120	120	68	64	37	29	34	28	32	25	7.3	6.6
Nitrate (as NO3)	mg/l	45	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	19	18
Nitrate as Nitrogen	mg/l	10	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0043	4.1
Nitrite, as Nitrogen	mg/l	1	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Potassium, Total	mg/l			6.6	6.6	11	11	9.4	10	4.6	4.6	5.6	5.6	11	10
Sodium, Total	mg/l			190	190	260	270	77	81	49	50	56	58	210	200
Sulfate	mg/l	500	S	ND 550	ND	0.75	ND	0.71	0.74	57	57	63	64	160	180
Total Dissolved Solid (TDS)	mg/l	1000	S		580	740	770	300	330	360	410	380	430	1600	1900
Nitrate + Nitrite, as Nitrogen General Physical Properties	mg/l	10	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	4300	4.1
Apparent Color	ACU	15	S	100	88	200	200	7.5	5	ND	ND	ND	ND	ND	ND
Hardness (Total, as CaCO3)	mg/l	13		41.3	41.5	25.8	26.6	85.2	89.3	221	225	209	214	821	800
Lab pH	Units			8.15	8.36	8.15	8.35	8.06	8.24	7.89	8.11	7.93	8.14	7.33	7.72
Langelier Index - 25 degree	None			0.387	0.577	0.081	0.282	0.288	0.46	0.522	0.737	0.51	0.716	0.555	0.861
Odor	TON	3	S	4	ND	2	ND	ND	ND	ND	ND	ND	ND	ND	ND
Specific Conductance	ımho/cn	1600	_	870	920	1200	1200	510	540	650	710	670	1200	2900	3000
Turbidity	NTU	5	S	0.1	0.2	0.15	0.25	0.1	0.25	0.1	0.2	0.1	0.15	0.15	0.1
Metals															
Aluminum, Total	ug/l	1000	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Antimony, Total	ug/l	6	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Arsenic, Total	ug/l	10	P	0.59	0.58	1.1	1.1	ND	ND	1.2	1.2	0.4	0.42	1.1	1.1
Barium, Total	ug/l	1000		13	12	12	12	15	16	39	39 ND	100	100	120	110
Beryllium, Total	ug/l	4	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cadmium, Total Chromium, Total	ug/l ug/l	50	P	ND 0.27	ND 0.27	ND 0.64	ND 0.7	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 0.6	ND 0.51
Hexavalent Chromium (Cr VI)	ug/l	10	P	0.27	0.27	0.094	0.077	0.051	ND	0.024	ND	0.034	ND	0.62	0.35
Copper, Total	ug/l	1300	P	ND	ND	1	1	ND	ND	ND	ND	ND	ND	0.61	ND
Iron, Total	mg/l	0.3	S	0.067	0.069	0.1	0.11	0.046	0.047	0.078	0.079	0.046	0.046	ND	ND
Lead, Total	ug/l	15	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Magnesium, Total	mg/l			3.32	3.38	3.48	3.6	9.93	10.4	18.2	18.6	17.2	17.7	59.2	58.4
Manganese, Total	ug/l	50	S	14	14	30	29	43	43	69	67	75	75	36	30
Mercury	ug/l	2	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Nickel, Total	ug/l	100	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Selenium, Total	ug/l	50	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.9	1.9
Silver, Total	ug/l	100	S	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Thallium, Total Zinc, Total	ug/l ug/l	2 5000	P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Volatile Organic Compounds	ug/1	3000	٥	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1.1-Dichloroethylene	ug/l	6	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	ug/l	0.5	P		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzene	ug/l	1	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Tetrachloride	ug/l	0.5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	ug/l	70	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloromethane (Methyl Chloride)	ug/l		Ļ	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.63
cis-1,2-Dichloroethylene	ug/l	6	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Di-Isopropyl Ether	ug/l	200	ъ	ND ND	ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND
Ethylbenzene Ethyl Tout Partyl Ethon	ug/l	300	P	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND ND
Ethyl Tert Butyl Ether Freon 11	ug/l ug/l	150	P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Freon 113	ug/l	1200	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene Chloride	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MTBE	ug/l	13	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Styrene	ug/l	100	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tert Amyl Methyl Ether	ug/l			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TBA	ug/l	12	N												
Tetrachloroethylene (PCE)	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	ug/l	150	P		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total Trihalomethanes	ug/l	80	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.53
trans-1,2-Dichloroethylene	ug/l	10	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethylene (TCE)	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl chloride (VC)	ug/l	0.5	P P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Xylenes (Total) Others	ug/l	1750	Р	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dioxane	ug/l	1	N	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.2	1.1
Perchlorate	ug/l	6	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.5	3.3
Surfactants	mg/l	0.5	S	ND	0.067	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total Organic Carbon	mg/l		Ť	12	11	7.4	6.6	1.5	1.5	0.57	0.4	0.57	0.53	1.7	0.77
			<u> </u>												

TABLE 3.2 WEST COAST BASIN WATER QUALITY RESULTS REGIONAL GROUNDWATER MONITORING - WATER YEAR 2021-2022 Page 11 of 22

			уре					Lom	ita #1				
Constituents	Units	MCL	MCL Type	Zor 4/19/2022	ne 1 8/30/2022	Zor 4/19/2022	ne 2 8/30/2022	Zor 4/19/2022	ne 3 8/30/2022	Zor 4/19/2022	ne 4 8/30/2022	Zo: 4/19/2022	ne 5 8/30/2022
General Minerals	1	~	~	4/13/2022	0/30/2022	4/13/2022	0/30/2022	4/13/2022	0/30/2022	4/17/2022	0/30/2022	4/17/2022	8/30/2022
Alkalinity	mg/l			280	270	270	260	290	280	250	250	280	280
Anion Sum	meq/l			29	29	28	27	18	19	17	19	33	36
Bicarbonate as HCO3	mg/l	1	N	340	330	320	310	360	340	300	300	350	340
Boron Bromide	mg/l	1	N	0.54 7	0.55 7.1	0.46 6.7	0.56 6.6	0.51 3.1	0.58 3.5	0.78 3.6	0.61 4.2	0.5 7.9	0.81 9.5
Calcium, Total	ug/l mg/l			225	217	210	197	108	121	278	148	126	278
Carbon Dioxide	mg/l			255	251	245	234	268	253	222	223	263	257
Carbonate as CO3	mg/l			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cation Sum	meq/l			27	27	26	25	17	18	33	19	17	33
Chloride	mg/l	500	S	840	810	780	750	400	440	440	490	940	1100
Fluoride	mg/l	2	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hydroxide as OH, Calculated	mg/l			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Iodide	ug/l			1800	1600	1600	1400	700	790	850	950	2300	2100
Nitrate (as NO3)	mg/l	45	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Nitrate as Nitrogen	mg/l	10	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Nitrite, as Nitrogen	mg/l	1	P	ND 20	ND 10	ND 10	ND	ND 12	ND 12	ND 22	ND	ND 12	ND 22
Potassium, Total Sodium, Total	mg/l			20 230	19 230	19 220	18 230	13 200	13 210	22 280	14 190	13 170	22 290
Sulfate	mg/l	500	S	7.7	20	23	22	38	54	5.5	6.9	24	26
Total Dissolved Solid (TDS)	mg/l mg/l	1000		1900	2300	1700	2200	1000	1200	1000	1600	2000	2900
Nitrate + Nitrite, as Nitrogen	mg/l	1000	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
General Physical Properties	.11g/1	10		110	1,0	TID	1,0	TID.	1,1	1,0	110	1,12	110
Apparent Color	ACU	15	S	5	18	10	10	12	10	15	18	3	4
Hardness (Total, as CaCO3)	mg/l			832	801	775	726	402	449	1020	541	462	1020
Lab pH	Units			7.68	7.7	7.64	7.82	7.72	7.82	7.82	7.89	7.6	7.74
Langelier Index - 25 degree	None	L		0.838	0.798	0.769	0.866	0.665	0.775	1.11	0.842	0.499	0.925
Odor	TON	3	S	12	8	8	4	2	8	2	8	2	8
Specific Conductance	amho/cr	1600		3300	3200	3100	3100	1900	2100	1900	2300	4000	4000
Turbidity	NTU	5	S	30	28	0.6	0.85	0.7	1	0.25	0.45	0.5	1.3
Metals													
Aluminum, Total	ug/l	1000		ND	ND	ND	ND	ND	ND	ND	ND	ND	55
Antimony, Total	ug/l	6	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Arsenic, Total	ug/l	10	P	0.43	0.51	ND	ND	0.81	0.8	ND	ND	ND	ND
Barium, Total	ug/l	1000	P	150	140	130	120	65	75 NB	180	91	78	170
Beryllium, Total	ug/l	4	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cadmium, Total	ug/l	50	P P	ND 0.29	ND 0.45	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Chromium, Total Hexavalent Chromium (Cr VI)	ug/l ug/l	10	P	0.29 ND	0.43 ND	ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND
Copper, Total	ug/l	1300	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Iron, Total	mg/l	0.3	S	0.4	0.46	0.066	0.061	0.035	0.039	0.17	0.18	0.13	0.17
Lead, Total	ug/l	15	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Magnesium, Total	mg/l			65.7	63.1	60.8	56.6	32.3	35.8	78.6	41.4	35.7	78.3
Manganese, Total	ug/l	50	S	480	450	450	380	84	86	530	260	230	520
Mercury	ug/l	2	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Nickel, Total	ug/l	100	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Selenium, Total	ug/l	50	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Silver, Total	ug/l	100	S	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Thallium, Total	ug/l	2	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Zinc, Total	ug/l	5000	S	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Volatile Organic Compounds		_		N.T.	N.T.	A IIIS	N.T.	N.T.	370	370) ID	3375	N TP
1,1-Dichloroethane	ug/l	5	P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,1-Dichloroethylene 1,2-Dichloroethane	ug/l ug/l	0.5	P P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Benzene	- 0	0.5	P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Carbon Tetrachloride	ug/l ug/l	0.5	P	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Chlorobenzene	ug/l	70	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloromethane (Methyl Chloride)	ug/l	,,,	Ė	ND	ND	ND	ND	ND	0.53	ND	ND	ND	ND
cis-1,2-Dichloroethylene	ug/l	6	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Di-Isopropyl Ether	ug/l			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	ug/l	300	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethyl Tert Butyl Ether	ug/l			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Freon 11	ug/l	150	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Freon 113	ug/l	1200	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene Chloride	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MTBE	ug/l	13	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Styrene	ug/l	100	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tert Amyl Methyl Ether	ug/l		Ļ	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TBA	ug/l	12	N	1 700	1 700	2.700	1.700	2.75					
Tetrachloroethylene (PCE)	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	ug/l	150	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total Trihalomethanes	ug/l	80	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethylene	ug/l	10	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethylene (TCE)	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl chloride (VC)	ug/l	0.5	P P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Xylenes (Total)	ug/l	1750	ľ	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Others 1,4-Dioxane	ug/l	1	N	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Perchlorate	,	6	P	ND ND	ND ND	ND ND	ND ND	ND	0.12	ND ND	ND ND	ND ND	ND ND
1 CICHIOI atc	ug/l	6									ND ND		ND ND
Surfactants	mg/l	0.5	S	ND	0.061	ND	ND	ND	ND	ND		ND	

TABLE 3.2 WEST COAST BASIN WATER QUALITY RESULTS REGIONAL GROUNDWATER MONITORING - WATER YEAR 2021-2022 Page 12 of 22

Constituents General Minerals Alkalinity Anion Sum Bicarbonate as HCO3 Boron Bromide Calcium, Total	Units	MCL	MCL Type	Zor				Long B					
Alkalinity Anion Sum Bicarbonate as HCO3 Boron Bromide Calcium, Total		~		5/23/2022	9/6/2022	Zor 5/23/2022	ne 2 9/6/2022	Zor 5/23/2022	ne 3 9/6/2022	Zor 5/23/2022	ne 4 9/6/2022	Zor 5/23/2022	ne 5 9/6/2022
Anion Sum Bicarbonate as HCO3 Boron Bromide Calcium, Total	407 - /1		2	3/23/2022	9/0/2022	3/23/2022	9/0/2022	3/23/2022	9/0/2022	3/23/2022	9/0/2022	3/23/2022	9/0/2022
Bicarbonate as HCO3 Boron Bromide Calcium, Total	mg/l			380	370	140	140	160	150	130	120	160	150
Boron Bromide Calcium, Total	meq/l			8.2	8	3.9	3.8	4.1	4	24	30	23	26
Bromide Calcium, Total	mg/l		N.	470	450	170	160	200	190	160	150	190	190
Calcium, Total	mg/l	1	N	0.37	0.37	0.13	0.13	0.13	0.12	0.11	0.11	0.11	0.11
,	ug/l			ND 11.6	ND 11.2	ND 17.3	ND 16.6	ND 19.9	ND 19.2	7 286	6.6 286	5.5 260	5.3 244
Carbon Dioxide	mg/l mg/l			338	325	17.3	120	19.9	137	120	112	144	136
Carbonate as CO3	mg/l			ND	5.5	ND							
Cation Sum	meq/l			7.7	7.6	3.8	3.7	3.9	3.8	28	28	25	23
Chloride	mg/l	500	S	20	20	21	21	31	30	690	930	640	740
Fluoride	mg/l	2	P	0.44	0.43	0.32	0.31	0.28	0.27	0.12	ND	0.14	ND
Hydroxide as OH, Calculated	mg/l			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Iodide	ug/l			40	51	20	25	36	43	1500	1700	1200	1500
Nitrate (as NO3)	mg/l	45	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Nitrate as Nitrogen	mg/l	10	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Nitrite, as Nitrogen	mg/l	1	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Potassium, Total	mg/l			4.2	4	2.5	2.1	2.7	2.5	17	17	12	11
Sodium, Total	mg/l	500	C	150 ND	150 ND	60 23	59 23	58 ND	57 ND	150 79	160 72	150 87	140 77
Sulfate Total Dissolved Solid (TDS)	mg/l mg/l	500 1000	S	ND 450	ND 470	230	250	ND 230	ND 250	2500	2900	2300	2200
Nitrate + Nitrite, as Nitrogen	mg/l mg/l	1000	P	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND
General Physical Properties	mg/1	10	1	ND	ND	ND	ND	ND	IND	IND	HD	HD	140
Apparent Color	ACU	15	S	80	50	10	12	15	20	4	4	3	3
Hardness (Total, as CaCO3)	mg/l			42.6	41.5	54.5	52.3	63	60.6	1030	1030	898	846
Lab pH	Units			8.25	8.44	8.23	8.38	8.09	8.28	7.6	7.86	7.69	7.94
Langelier Index - 25 degree	None			0.435	0.593	0.215	0.34	0.194	0.333	0.495	0.689	0.639	0.84
Odor	TON	3	S	ND	ND	ND	ND	ND	ND	8	ND	ND	ND
Specific Conductance	ımho/cn	1600	S	750	780	380	400	390	410	3200	3600	2900	2900
Turbidity	NTU	5	S	ND	0.25	ND	0.15	ND	0.15	0.3	0.75	0.1	0.65
Metals													
Aluminum, Total	ug/l	1000	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Antimony, Total	ug/l	6	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Arsenic, Total	ug/l	10	P	ND	ND	ND	ND	ND	ND	0.48	0.45	0.73	0.74
Barium, Total	ug/l	1000	P	9	9.3	14	14	7.8	7.5	92	93	110	110
Beryllium, Total	ug/l	4	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cadmium, Total	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chromium, Total	ug/l	50	P	0.28	0.23	ND							
Hexavalent Chromium (Cr VI)	ug/l	10	P	0.11	0.17 ND	0.07	0.11 ND	0.084	0.13 ND	ND ND	ND ND	ND ND	ND
Copper, Total Iron, Total	ug/l	0.3	P	ND 0.049	0.034	ND ND	ND ND	ND 0.036	0.031	0.22	0.21	0.21	ND 0.19
Lead, Total	mg/l ug/l	15	P	ND	ND	ND ND	ND						
Magnesium, Total	mg/l	13	1	3.33	3.26	2.74	2.62	3.23	3.1	76.8	75.9	60.2	57.3
Manganese, Total	ug/l	50	S	11	11	7.3	7.1	9.5	9	230	240	260	260
Mercury	ug/l	2	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Nickel, Total	ug/l	100	P	4.2	ND	ND	ND	ND	ND	ND	ND	ND	ND
Selenium, Total	ug/l	50	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Silver, Total	ug/l	100	S	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Thallium, Total	ug/l	2	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Zinc, Total	ug/l	5000	S	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Volatile Organic Compounds													
1,1-Dichloroethane	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethylene	ug/l	6	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	ug/l	0.5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzene	ug/l	1	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Tetrachloride Chlorobenzene	ug/l	0.5 70	P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	ug/l	/0	P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Chloromethane (Methyl Chloride) cis-1,2-Dichloroethylene	ug/l ug/l	6	P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Di-Isopropyl Ether	ug/l ug/l	U	1	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Ethylbenzene	ug/l	300	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethyl Tert Butyl Ether	ug/l	200		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Freon 11	ug/l	150	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Freon 113	ug/l	1200		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene Chloride	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MTBE	ug/l	13	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Styrene	ug/l	100	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tert Amyl Methyl Ether	ug/l			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TBA	ug/l	12	N	ND	ND	ND	ND	ND	ND	3.4	10	3.2	8.2
Tetrachloroethylene (PCE)	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	ug/l	150	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total Trihalomethanes	ug/l	80	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethylene	ug/l	10	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethylene (TCE)	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl chloride (VC)	ug/l	0.5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Xylenes (Total)	ug/l	1750	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Others	. 4	1	NT	NID	NTS.	NID.	AID.	ND	MD	MD	NID	NID	NID
1,4-Dioxane	ug/l	1	N	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Perchlorate	ug/l	6	P	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Surfactants	mg/l mg/l	0.5	S	ND 7.3	ND 6.6	ND 1.3	ND 1.3	ND 2.2	ND 2.1	ND 1.3	ND 1.3	ND 1.3	ND 1.2

TABLE 3.2 WEST COAST BASIN WATER QUALITY RESULTS REGIONAL GROUNDWATER MONITORING - WATER YEAR 2021-2022 Page 13 of 22

			ype			Long H	Beach #8		
Constituents	Units	MCL	MCL Type	Zone 1 5/6/2022	Zone 2 5/6/2022	Zone 3 5/6/2022	Zone 4 5/6/2022	Zone 5 5/6/2022	Zone 6 5/6/2022
General Minerals		~	2	3/6/2022	3/6/2022	3/0/2022	3/0/2022	3/0/2022	3/6/2022
Alkalinity	mg/l			540	460	630	410	310	210
Anion Sum	meq/l			11	10	15	25	20	19
Bicarbonate as HCO3	mg/l			660	570	770	490	380	250
Boron	mg/l	1	N	1.2	0.76	1.3	1.1	0.6	0.2
Bromide Calainer Tatal	ug/l			ND 8.06	ND 9.77	ND 10.8	3.9 48.3	3.1	ND
Calcium, Total Carbon Dioxide	mg/l			475	410	10.8 557	366	65.4 281	113 195
Carbonate as CO3	mg/l mg/l			ND	ND	ND	ND	ND	ND
Cation Sum	meq/l			11	9.6	14	22	18	18
Chloride	mg/l	500	S	24	37	95	620	500	520
Fluoride	mg/l	2	P	0.72	0.72	0.52	ND	ND	ND
Hydroxide as OH, Calculated	mg/l			ND	ND	ND	ND	ND	ND
Iodide	ug/l			89	94	110	930	700	62
Nitrate (as NO3)	mg/l	45	P	ND	ND	ND	ND	ND	ND
Nitrate as Nitrogen	mg/l	10	P	ND	ND	ND	ND	ND	ND
Nitrite, as Nitrogen	mg/l	1	P	ND	ND	ND	ND	ND	ND
Potassium, Total	mg/l			2	4.3	8.7	15	12	8
Sodium, Total	mg/l	500	C	240	200	290	380	270	210
Sulfate Total Dissolved Solid (TDS)	mg/l	500 1000	S	ND 690	ND 600	ND 860	ND 1400	ND 1000	22 1100
Nitrate + Nitrite, as Nitrogen	mg/l	1000	P	ND	ND	ND	ND	ND	ND
General Physical Properties	mg/l	10	Р	ND	ND	ND	ND	ND	ND
Apparent Color	ACU	15	S	500	250	310	50	38	12
Hardness (Total, as CaCO3)	mg/l	15	3	28.6	37.2	47.1	256	277	427
Lab pH	Units			8.32	8.21	8.22	7.89	7.88	7.51
Langelier Index - 25 degree	None			0.452	0.373	0.52	0.59	0.636	0.322
Odor	TON	3	S	4	ND	2	4	4	4
Specific Conductance	ımho/cr	_		990	900	1400	2500	2000	1900
Turbidity	NTU	5	S	0.15	0.3	0.3	0.15	0.7	4.9
Metals									
Aluminum, Total	ug/l	1000	P	ND	ND	ND	ND	ND	ND
Antimony, Total	ug/l	6	P	ND	ND	ND	ND	ND	ND
Arsenic, Total	ug/l	10	P	1.3	0.8	0.98	ND	0.57	0.42
Barium, Total	ug/l	1000	_	9.7	9.6	13	21	21	120
Beryllium, Total	ug/l	4	P	ND	ND	ND	ND	ND	ND
Cadmium, Total	ug/l	5	P	ND	ND	ND	ND	ND	ND
Chromium, Total	ug/l	50	P	1.1	1.1	1.4	0.32	0.31	ND
Hexavalent Chromium (Cr VI)	ug/l	10 1300	P	0.2 3.4	0.14	0.16 0.72	ND ND	ND ND	ND ND
Copper, Total Iron, Total	ug/l mg/l	0.3	S	0.19	1.8 0.16	0.72	0.17	0.24	0.72
Lead, Total	ug/l	15	P	ND	ND	ND	ND	ND	ND
Magnesium, Total	mg/l	13	1	2.05	3.1	4.89	32.8	27.5	35.2
Manganese, Total	ug/l	50	S	17	24	21	13	46	320
Mercury	ug/l	2	P	ND	ND	ND	ND	ND	ND
Nickel, Total	ug/l	100	P	ND	ND	ND	ND	ND	ND
Selenium, Total	ug/l	50	P	ND	ND	ND	ND	ND	ND
Silver, Total	ug/l	100	S	ND	ND	ND	ND	ND	ND
Thallium, Total	ug/l	2	P	ND	ND	ND	ND	ND	ND
Zinc, Total	ug/l	5000	S	ND	ND	ND	ND	ND	ND
Volatile Organic Compounds		_	<u> </u>						
1,1-Dichloroethane	ug/l	5	P	ND	ND	ND	ND	ND	ND
1,1-Dichloroethylene	ug/l	6	P	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	ug/l	0.5	P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Benzene Carbon Tetrachlarida	ug/l	0.5	P P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Carbon Tetrachloride Chlorobenzene	ug/l ug/l	70	P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Chloromethane (Methyl Chloride)	ug/l	/0	1	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
cis-1,2-Dichloroethylene	ug/l	6	P	ND ND	ND ND	ND	ND	ND ND	ND ND
Di-Isopropyl Ether	ug/l		Ė	ND	ND	ND	ND	ND	ND
Ethylbenzene	ug/l	300	P	ND	ND	ND	ND	ND	ND
Ethyl Tert Butyl Ether	ug/l		Ė	ND	ND	ND	ND	ND	ND
Freon 11	ug/l	150	P	ND	ND	ND	ND	ND	ND
Freon 113	ug/l	1200	P	ND	ND	ND	ND	ND	ND
Methylene Chloride	ug/l	5	P	ND	ND	ND	ND	ND	ND
MTBE	ug/l	13	P	ND	ND	ND	ND	ND	ND
Styrene	ug/l	100	P	ND	ND	ND	ND	ND	ND
Tert Amyl Methyl Ether	ug/l			ND	ND	ND	ND	ND	ND
TBA	ug/l	12	N						
Tetrachloroethylene (PCE)	ug/l	5	P	ND	ND	ND	ND	ND	ND
Toluene	ug/l	150	P	ND	ND	ND	ND	ND	ND
Total Trihalomethanes	ug/l	80	P	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethylene	ug/l	10	P	ND	ND	ND	ND	ND	ND
Trichloroethylene (TCE)	ug/l	5	P	ND ND	ND ND	ND ND	ND	ND ND	ND ND
Vinyl chloride (VC)	ug/l	0.5	P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Xylenes (Total)	ug/l	1750	Р	ND	ND	ND	ND	ND	ND
Others	n = /1	1	NT	MD	MD	VID	NID	MD	NID.
1,4-Dioxane Perchlorate	ug/l	1 2	N P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Perchlorate Surfactants	ug/l mg/l	0.5	S	ND ND	ND ND	ND ND	ND 0.051	ND ND	ND ND
Total Organic Carbon		0.3	3	ND 15	18	ND 26	21	15	1.4
1 Otal Olganic Calbon	mg/l	1	1	13	10	20	41	13	1.4

TABLE 3.2 WEST COAST BASIN WATER QUALITY RESULTS REGIONAL GROUNDWATER MONITORING - WATER YEAR 2021-2022 Page 14 of 22

		Manhattan Beach #1															
Constituents	Units	MCL	MCL Type	Zor 3/23/2022	ne 1 7/27/2022		ne 2 7/26/2022	Zot 3/23/2022		Zon 3/22/2022		Zor	ne 5 7/26/2022	Zoi 3/22/2022	ne 6	Zo: 3/22/2022	ne 7
General Minerals		,_,															
Alkalinity	mg/l			590	590	460	470	950	960	500	510	130	140	170	170	160	170
Anion Sum	meq/l			130	130	42	49	23	23	11	11	280	430	140	140	12	11
Bicarbonate as HCO3	mg/l		NI	720	310	560	570	1200	1200	600	630	160	310	200	200	190	210
Boron	mg/l	1	N	14 19	15 22	6.5 9.4	6.6 7.9	3.5 2.2	3.6 2.1	0.41 ND	0.41 ND	0.54	0.53 ND	0.13	0.1 ND	0.19 ND	0.19 ND
Bromide Calcium, Total	ug/l mg/l			48.4	48.1	32.9	32.4	15.5	16.1	26.6	26.4	1870	1880	921	921	57.5	59.4
Carbon Dioxide	mg/l			548	526	409	418	854	854	443	456	142	140	161	159	142	155
Carbonate as CO3	mg/l			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cation Sum	meq/l			120	120	47	44	21	20	11	10	380	380	130	130	11	11
Chloride	mg/l	500	S	4100	4000	1200	1400	130	130	39	39	8900	14000	4400	4400	140	130
Fluoride	mg/l	2	P	ND	ND	0.49	ND	0.3	0.3	0.18	0.18	ND	ND	0.1	ND	0.12	ND
Hydroxide as OH, Calculated	mg/l			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Iodide	ug/l			6000	4800	2400	2200	770	600	110	95	150	130	26	21	33	32
Nitrate (as NO3)	mg/l	45	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	10	13
Nitrate as Nitrogen	mg/l	10	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.4	3
Nitrite, as Nitrogen	mg/l	1	P	ND 25	ND 35	ND 10	ND 22	ND 27	ND 22	ND	ND	ND 140	ND 180	ND 45	ND	ND 5.0	ND
Potassium, Total	mg/l			2700	2600	19 1000	23 940	27 420	32 410	11 200	11 180	140 4800	180 4700	45 1500	56 1400	5.9 170	6 150
Sodium, Total Sulfate	mg/l mg/l	500	S	ND	ND	ND	ND	ND	0.55	ND	ND	1100	1800	580	560	200	200
Total Dissolved Solid (TDS)	mg/l mg/l	1000		7200	7600	2700	2700	1300	1300	600	590	23000	26000	7500	8700	700	690
Nitrate + Nitrite, as Nitrogen	mg/l	10	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.4	3100
General Physical Properties	- 0 -			_	-												
Apparent Color	ACU	15	S	100	110	100	120	350	350	30	40	4	4	ND	35	ND	ND
Hardness (Total, as CaCO3)	mg/l			257	257	131	131	85	89.5	108	107	8620	8630	3350	3310	198	205
Lab pH	Units			7.65	8.03	7.98	8.05	7.93	8.18	8.03	8.11	7.04	7.18	7.4	7.46	8.04	8.04
Langelier Index - 25 degree	None			0.264	0.634	0.465	0.537	0.512	0.782	0.665	0.752	0.547	0.74	0.748	0.791	0.497	0.539
Odor	TON	3	S	10	10	20	5	10	10	2	ND	2	2	ND	2	ND	ND
Specific Conductance	ımho/cn	1600		13000	12000	4600	4400	2100	2100	870	980	33000	33000	12000	12000	1000	1100
Turbidity	NTU	5	S	ND	0.2	ND	0.1	ND	0.1	ND	0.15	65	30	16	11	ND	0.1
Metals		1000	n	NID.) ID	N.I.D.) ID	ND	N.ID	\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	N/D	N.ID	N/D	NID.) ID	NID	7110
Aluminum, Total	ug/l	1000	_	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Antimony, Total	ug/l	6	P	ND	ND 1.5	ND 0.53	ND 0.42	ND 0.58	ND 0.6	ND 0.61	ND 0.54	ND 0.78	ND 0.53	ND 0.53	ND 0.52	ND 4.7	ND 4.3
Arsenic, Total Barium, Total	ug/l	10 1000	P P	1.6 700	720	200	200	0.58 94	0.6 94	0.61 40	40	190	190	220	220	35	38
Beryllium, Total	ug/l ug/l	4	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cadmium, Total	ug/l	5	P	ND	ND	ND	ND	6.3	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chromium, Total	ug/l	50	P	0.37	0.39	0.25	0.25	1.8	1.7	0.24	3.1	0.23	0.24	ND	ND	ND	ND
Hexavalent Chromium (Cr VI)	ug/l	10	P	ND	ND	ND	ND	ND	ND	0.024	ND	ND	ND	ND	ND	ND	ND
Copper, Total	ug/l	1300	P	ND	ND	ND	ND	ND	ND	ND	1.3	ND	ND	ND	ND	ND	ND
Iron, Total	mg/l	0.3	S	0.47	0.49	0.16	0.16	0.19	0.21	0.082	0.13	4.4	4	1.8	1.7	ND	ND
Lead, Total	ug/l	15	P	ND	ND	ND	ND	ND	ND	ND	0.31	ND	ND	ND	ND	ND	ND
Magnesium, Total	mg/l			33	33.2	11.9	12.2	11.3	12	10	9.91	958	957	254	246	13.3	13.8
Manganese, Total	ug/l	50	S	44	47	40	39	42	41	58	57	850	810	980	960	110	120
Mercury	ug/l	2	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Nickel, Total	ug/l	100	P	ND	ND	ND	ND	120	ND	ND	ND	ND	ND	ND	ND	ND	ND
Selenium, Total	ug/l	50	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.4	1.9
Silver, Total	ug/l	100	S	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Thallium, Total Zinc, Total	ug/l	2 5000	P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Volatile Organic Compounds	ug/l	3000	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethylene	ug/l	6	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1.2-Dichloroethane	ug/l	0.5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzene	ug/l	1	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Tetrachloride	ug/l	0.5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	ug/l	70	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloromethane (Methyl Chloride)	ug/l			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethylene	ug/l	6	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Di-Isopropyl Ether	ug/l	200	_	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	ug/l	300	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethyl Tert Butyl Ether	ug/l	150	D	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Freon 11 Freon 113	ug/l ug/l	150 1200		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Methylene Chloride	ug/l ug/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MTBE	ug/l	13	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Styrene	ug/l	100	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tert Amyl Methyl Ether	ug/l	- 50	Ė	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TBA	ug/l	12	N									1					
Tetrachloroethylene (PCE)	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	ug/l	150	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total Trihalomethanes	ug/l	80	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethylene	ug/l	10	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethylene (TCE)	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl chloride (VC)	ug/l	0.5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Xylenes (Total)	ug/l	1750	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Others		L.	Ļ														
1,4-Dioxane	ug/l	1	N	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Perchlorate	ug/l	6	P	ND	ND 0.001	ND 0.065	ND 0.061	ND	ND	ND	ND	ND	ND	ND	ND	0.67	ND
Surfactants	mg/l	0.5	S	0.068	0.091	0.065	0.061	ND 26	ND 20	ND 4.5	ND 4.7	ND 1.5	ND 1.4	ND 0.50	ND 0.55	ND 0.86	ND 0.07
Total Organic Carbon	mg/l	<u> </u>	<u> </u>	23	24	26	27	36	38	4.5	4.7	1.5	1.4	0.59	0.55	0.86	0.97

TABLE 3.2 WEST COAST BASIN WATER QUALITY RESULTS REGIONAL GROUNDWATER MONITORING - WATER YEAR 2021-2022 Page 15 of 22

		_	lype			age 13 01 2		ice Station			
Constituents	Units	MCL	MCL Type	Zor 3/25/2022	ne 1 8/29/2022	Zo: 3/25/2022	ne 2 8/29/2022	Zoi 3/25/2022	ne 3 8/29/2022	Zo 3/25/2022	ne 4 8/29/2022
General Minerals											
Alkalinity	mg/l			120	120	150	160	130	130	160	160
Anion Sum	meq/l			200	200	45	42	14	13	12	11
Bicarbonate as HCO3 Boron	mg/l	1	N	0.15	150 0.16	0.2	190 0.23	160 0.3	160 0.29	190 0.31	190 0.29
Bromide	mg/l ug/l	1	19	19	59	3.9	4.2	0.61	0.6	0.79	0.66
Calcium, Total	mg/l			1120	1150	351	397	92.9	91.4	64.3	62.7
Carbon Dioxide	mg/l			116	114	135	151	120	120	141	140
Carbonate as CO3	mg/l			ND	ND	ND	ND	ND	ND	ND	ND
Cation Sum	meq/l			180	190	40	43	14	14	11	11
Chloride	mg/l	500	S	6400	6700	1400	1300	250	230	170	160
Fluoride	mg/l	2	P	ND	ND	0.5	0.5	0.3	0.3	0.31	0.28
Hydroxide as OH, Calculated	mg/l			ND	ND	ND	ND	ND	ND	ND	ND
Iodide	ug/l			73	82	95	120	14	18	82	96
Nitrate (as NO3)	mg/l	45	P	ND	ND	ND	ND	ND	ND	ND	ND
Nitrate as Nitrogen	mg/l	10	P	ND	ND	ND	ND	ND	ND	ND	ND
Nitrite, as Nitrogen	mg/l	1	P	ND	ND	ND	ND	ND	ND	ND	ND
Potassium, Total	mg/l			100	120	20	22	9.5	9.8	7.9	8.3
Sodium, Total	mg/l	500	C	1800	1800	270	270	160	150	140	140
Sulfate Total Dissolved Solid (TDS)	mg/l	500 1000	S	13000	640 14000	3000	58 2700	200 860	200 880	180 700	180 700
Nitrate + Nitrite, as Nitrogen	mg/l mg/l	1000	P	13000 ND	14000 ND	3000 ND	2700 ND	860 ND	880 ND	ND	ND
General Physical Properties	mg/I	10	ľ	ND	ND	ND	ND	ND	ND	ND	ND
Apparent Color	ACU	15	S	7.5	7.5	3	35	3	ND	3	ND
Hardness (Total, as CaCO3)	mg/l	13	د	5080	5220	1380	1540	348	346	243	240
Lab pH	Units			7.43	7.45	7.64	7.44	7.96	7.86	8.02	7.98
Langelier Index - 25 degree	None		П	0.662	0.691	0.65	0.548	0.51	0.4	0.525	0.474
Odor	TON	3	S	ND	ND	2	10	ND	4	ND	4
Specific Conductance	ımho/cn			17000	18000	4800	5300	1600	1600	1200	1200
Turbidity	NTU	5	S	1.5	2.3	6.4	12	ND	0.25	ND	0.15
Metals					-						
Aluminum, Total	ug/l	1000	P	ND	ND	ND	ND	ND	ND	ND	ND
Antimony, Total	ug/l	6	P	ND	ND	ND	ND	ND	ND	ND	ND
Arsenic, Total	ug/l	10	P	ND	ND	3.5	3.3	1.4	1.3	0.93	0.85
Barium, Total	ug/l	1000	P	270	250	320	310	40	39	38	36
Beryllium, Total	ug/l	4	P	ND	ND	ND	ND	ND	ND	ND	ND
Cadmium, Total	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND
Chromium, Total	ug/l	50	P	ND	ND	ND	ND	ND	ND	ND	ND
Hexavalent Chromium (Cr VI)	ug/l	10	P	ND	ND	ND	ND	ND	ND	ND	ND
Copper, Total	ug/l	1300	P	1.2	ND	ND	ND	0.67	ND	ND	ND
Iron, Total	mg/l	0.3	S	0.33	0.33	1.1	1.2	ND	ND	ND	ND
Lead, Total	ug/l	15	P	ND	ND	ND	ND	ND	ND	ND	ND
Magnesium, Total	mg/l	50	C	553	570	122	132	28.2	28.7	20	20.2
Manganese, Total	ug/l	50	S	400	350	470	410	140	140	57	57
Mercury	ug/l	100	P P	ND ND	ND ND	0.062 ND	ND ND	0.05 ND	ND ND	0.061 ND	ND ND
Nickel, Total Selenium, Total	ug/l ug/l	50	P	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Silver, Total	ug/l	100	S	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND
Thallium, Total	ug/l	2	P	ND	ND	ND	ND	ND	ND	ND	ND
Zinc, Total	ug/l	5000	_	ND	ND	ND	ND	ND	ND	ND	ND
Volatile Organic Compounds	ug/1	2000		T.D	112	112	1.12	1.12	112	1.12	1,2
1,1-Dichloroethane	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethylene	ug/l	6	P	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	ug/l	0.5	P	ND	ND	ND	ND	ND	ND	ND	ND
Benzene	ug/l	1	P	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Tetrachloride	ug/l	0.5	P	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	ug/l	70	P	ND	ND	ND	ND	ND	ND	ND	ND
Chloromethane (Methyl Chloride)	ug/l			ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethylene	ug/l	6	P	ND	ND	ND	ND	ND	ND	ND	ND
Di-Isopropyl Ether	ug/l		Ų	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	ug/l	300	P	ND	ND	ND	ND	ND	ND	ND	ND
Ethyl Tert Butyl Ether	ug/l	1	Ļ	ND	ND	ND	ND	ND	ND	ND	ND
Freon 11	ug/l	150	_	ND	ND	ND	ND	ND	ND	ND	ND
Freon 113	ug/l	1200		ND	ND	ND	ND ND	ND ND	ND ND	ND	ND
Methylene Chloride	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND
MTBE	ug/l	13	P P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Styrene Tert Amyl Methyl Ether	ug/l ug/l	100	r	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
TBA	ug/l ug/l	12	N	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethylene (PCE)	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	ug/l	150	P	ND	ND	ND	ND	ND	ND ND	ND	ND
Total Trihalomethanes	ug/l	80	P	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethylene	ug/l	10	P	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethylene (TCE)	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl chloride (VC)	ug/l	0.5	P	ND	ND	ND	ND	ND	ND	ND	ND
Xylenes (Total)	ug/l	1750		ND	ND	ND	ND	ND	ND	ND	ND
Others	ug/1	1,50									.,,,
1,4-Dioxane	ug/l	1	N	ND	ND	ND	ND	ND	ND	ND	ND
Perchlorate	ug/l	6	P	ND	ND	ND	ND	ND	ND	ND	ND
	,	0.5	S	ND	ND	ND	ND	ND	ND	ND	ND
Surfactants	mg/l										

TABLE 3.2 WEST COAST BASIN WATER QUALITY RESULTS REGIONAL GROUNDWATER MONITORING - WATER YEAR 2021-2022 Page 16 of 22

			ype				PM-3 I	Madrid			
Constituents	Units	MCL	MCL Type	Zor 3/29/2022	ne 1 8/24/2022	Zor 3/29/2022	ne 2 8/24/2022	Zor 3/29/2022	ne 3 8/24/2022	Zo 3/29/2022	ne 4 8/24/2022
General Minerals											
Alkalinity	mg/l			320	320	190 10	190	190	190	190	190
Anion Sum Bicarbonate as HCO3	meq/l mg/l			7.2 390	7.1 380	230	9.6 230	13 230	13 230	15 230	15 230
Boron	mg/l	1	N	0.35	0.35	0.17	0.16	0.23	0.23	0.39	0.4
Bromide	ug/l			ND	ND	ND	ND	1.6	1.8	1.7	1.7
Calcium, Total	mg/l			11.5	12	80.7	84.3	107	113	108	112
Carbon Dioxide	mg/l			285	279	173	171	174	169	170	170
Carbonate as CO3	mg/l			ND	5.6	ND	ND	ND	ND	ND	ND
Cation Sum	meq/l			6.6	6.7	9.2	9.5	13	13	14	15
Chloride	mg/l	500	S	26	27	220	210	300	310	320	330
Fluoride Hydroxide as OH, Calculated	mg/l mg/l	2	P	0.26 ND	0.27 ND	0.26 ND	0.26 ND	0.27 ND	0.27 ND	0.28 ND	0.29 ND
Iodide	ug/l			32	30	120	110	250	250	260	230
Nitrate (as NO3)	mg/l	45	P	ND	ND	ND	ND	ND	ND	ND	ND
Nitrate as Nitrogen	mg/l	10	P	ND	ND	ND	ND	ND	ND	ND	ND
Nitrite, as Nitrogen	mg/l	1	P	ND	ND	ND	ND	ND	ND	ND	ND
Potassium, Total	mg/l			13	14	5.1	5.5	6.8	7.3	7.2	8
Sodium, Total	mg/l			110	120	73	73	110	110	140	140
Sulfate	mg/l	500	S	ND	ND	3	ND	40	48	95	100
Total Dissolved Solid (TDS)	mg/l	1000		380	400	570	640	830	960	900	980 ND
Nitrate + Nitrite, as Nitrogen	mg/l	10	P	ND	ND	ND	ND	ND	ND	ND	ND
Apparent Color	ACU	15	S	30	35	5	5	3	3	10	15
Apparent Color Hardness (Total, as CaCO3)	mg/l	13	3	64.2	66.5	296	309	395	416	398	413
Lab pH	Units			8.26	8.35	7.87	7.97	7.84	7.93	7.73	7.83
Langelier Index - 25 degree	None			0.383	0.486	0.572	0.678	0.621	0.716	0.505	0.61
Odor	TON	3	S	ND	ND	ND	ND	ND	ND	ND	ND
Specific Conductance	umho/cn	1600	S	700	680	1100	1000	1500	1600	1800	1700
Turbidity	NTU	5	S	0.1	0.1	0.55	0.5	0.45	0.55	3.6	3.8
Metals											
Aluminum, Total	ug/l	1000		ND	ND	ND	ND	ND	ND	ND	ND
Antimony, Total	ug/l	6	P	ND	ND	ND	ND	ND	ND	ND	ND
Arsenic, Total	ug/l	10	P P	ND 19	ND	ND 32	ND 31	ND 79	ND 92	8.3 78	8.4 79
Barium, Total Beryllium, Total	ug/l ug/l	1000	P	ND	18 ND	32 ND	ND	ND	83 ND	ND	ND
Cadmium, Total	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND
Chromium, Total	ug/l	50	P	0.22	ND	ND	ND	ND	ND	ND	ND
Hexavalent Chromium (Cr VI)	ug/l	10	P	0.11	0.023	ND	ND	ND	ND	ND	ND
Copper, Total	ug/l	1300	P	ND	ND	ND	ND	ND	ND	ND	ND
Iron, Total	mg/l	0.3	S	0.037	0.045	0.21	0.24	0.11	0.11	0.58	0.56
Lead, Total	ug/l	15	P	ND	ND	ND	ND	ND	ND	ND	ND
Magnesium, Total	mg/l			8.6	8.88	22.9	24	30.8	32.5	31	32.4
Manganese, Total	ug/l	50	S	21	20	55	52	64	66	360	380
Mercury	ug/l	2	P	ND	ND 2.2	ND	ND	ND	ND ND	ND	ND
Nickel, Total Selenium, Total	ug/l ug/l	100 50	P P	ND ND	2.3 ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Silver, Total	ug/l	100	S	ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND
Thallium, Total	ug/l	2	P	ND	ND	ND	ND	ND	ND	ND	ND
Zinc, Total	ug/l	5000	_	ND	ND	ND	ND	ND	ND	ND	ND
Volatile Organic Compounds											
1,1-Dichloroethane	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethylene	ug/l	6	P	ND	ND	ND	ND	1.3	1.2	ND	ND
1,2-Dichloroethane	ug/l	0.5	P	ND	ND	ND	ND	ND	ND	ND	ND
Benzene	ug/l	1	P	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Tetrachloride	ug/l	0.5	P P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Chlorobenzene Chloromethane (Methyl Chloride)	ug/l ug/l	70	P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
cis-1,2-Dichloroethylene	ug/l ug/l	6	P	ND ND	ND ND	ND ND	ND ND	0.5	0.5	1.5	1.3
Di-Isopropyl Ether	ug/l		Ė	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	ug/l	300	P	ND	ND	ND	ND	ND	ND	ND	ND
Ethyl Tert Butyl Ether	ug/l			ND	ND	ND	ND	ND	ND	ND	ND
Freon 11	ug/l	150	P	ND	ND	ND	ND	ND	ND	ND	ND
Freon 113	ug/l	1200		ND	ND	ND	ND	ND	ND	ND	ND
Methylene Chloride	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND
MTBE	ug/l	13	P	ND	ND	ND	ND	ND	ND	ND	ND
Styrene	ug/l	100	P	ND	ND	ND	ND	ND	ND	ND	ND
Tert Amyl Methyl Ether TBA	ug/l	12	N	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethylene (PCE)	ug/l ug/l	12	P	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	ug/l ug/l	150	P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Total Trihalomethanes	ug/l	80	P	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethylene	ug/l	10	P	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethylene (TCE)	ug/l	5	P	ND	ND	ND	ND	ND	ND	0.73	0.7
Vinyl chloride (VC)	ug/l	0.5	P	ND	ND	ND	ND	ND	ND	ND	ND
Xylenes (Total)	ug/l	1750	P	ND	ND	ND	ND	ND	ND	ND	ND
Others											
1,4-Dioxane	ug/l	1	N	ND	ND	ND	ND	ND	ND	0.15	0.21
Perchlorate	ug/l	6	P	ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND
Surfactants Total Organic Carbon	mg/l	0.5	S	ND 2	ND 2.4	ND 0.9	ND 0.64	ND 1	ND 0.86	ND	ND 0.08
Total Organic Carbon	mg/l		<u> </u>	3	2.4	0.9	0.64	1	0.86	1.2	0.98

TABLE 3.2 WEST COAST BASIN WATER QUALITY RESULTS REGIONAL GROUNDWATER MONITORING - WATER YEAR 2021-2022 Page 17 of 22

Constituents				PM-4 Mariner								
General Miscraft	Constituents	Units	MCL	MCL T								ne 4 8/28/2022
Auson Stories Auson Storie												
Boarbonnes and ICO3	·											220 12
Boson												260
Security		1	N								0.23	
Calcium, Total												ND
Carbonate as CO3	Calcium, Total	,			27	27.4	1460	1430	45.7	45.1	75.7	76.6
Cition Sum	Carbon Dioxide	mg/l										193
Chloride		_										ND
Flanciste mg2 2 P 03 03 ND ND 0.38 0.32 0.33 0.34 0.35 0.34 0.35 0.34 0.35 0.3			500	0								11
Instruction as OH, Calculated mg1 ND												140
Section Communication Co				P								0.21 ND
Nitrate is Nitrogen mgi 43 P ND ND ND ND ND ND ND												45
Single as Nilrogen mgl 10 P ND ND ND ND ND ND ND			45	P								ND
Pressum Total			10	P	ND	ND	ND	ND	ND	ND	ND	ND
Sedims	Nitrite, as Nitrogen	mg/l	1	P	ND	ND	ND		ND	ND	ND	ND
Sulfate												7.6
Trotal Desolved Solid (TDS) mgg 1000 S 340 340 15000 15000 550 550 560 660 Mixtael Nitrits, a Nitrigen mg 100 P ND ND ND ND ND ND ND												120
Nizera et Nitrice, as Nitrogon mgf 10 P ND ND ND ND ND ND ND												160
General Physical Properties Apparent Color ACU 15 S 7.5 7.5 4 5 5 10 7.5 4												690 ND
Appearent Color		mg/I	10	r	ND	ND	ND	ND	ND	ND	ND	ND
Hardness (Total, as CaCO3)		ACU	15	S	7.5	7.5	4	5	10	7.5	4	4
LabpH			13	5								275
Lingelier Index - 25 degree												8.04
Specific Conductance												0.761
Turbidity			3									ND
Metals												1100
Aluminum, Total ug/l 1000 P ND ND ND ND ND ND ND		NTU	5	S	ND	ND	1.1	1.3	0.3	0.3	0.2	0.2
Antimony, Total ug/l 6 P ND ND ND ND ND ND ND		/1	1000	D	MD	MD	MD	NID.	ND	NID	NID	NID
Assenie, Total ug/l 100 P ND ND ND ND ND ND		_										ND ND
Barium, Total												ND ND
Beryllium, Total		_										58
Cadmium, Total												ND
Chromium, Total												ND
Copper_Total			50	P	ND	ND	ND	ND	ND	ND	ND	ND
	Hexavalent Chromium (Cr VI)	ug/l	10	P					0.034			ND
		ug/l	1300									ND
Magnesium, Total		_										0.14
Manganese, Total			15	P								ND
Mercury			50	C								20.5
Nicket, Total												74 ND
Selenium, Total												ND
Silver, Total												ND
Zinc, Total	· · · · · · · · · · · · · · · · · · ·											ND
Volatile Organic Compounds	Thallium, Total	ug/l	2	P	ND	ND	ND	ND	ND	ND	ND	ND
I.1-Dichloroethane		ug/l	5000	S	ND	ND	ND	ND	ND	ND	ND	ND
1.2-Dichloroethane		U										ND
Benzene												ND
Carbon Tetrachloride	-	U	0.5									ND ND
Chlorobenzene			0.5									ND ND
Chloromethane (Methyl Chloride) ug/l ND ND ND ND ND ND ND												ND
cis-1,2-Dichloroethylene ug/l 6 P ND N			, 0	Ĺ								ND
Ethylbenzene			6	P								ND
Ethylbenzene		_										ND
Freon 1			300	P								ND
Freon 113												ND
Methylene Chloride												ND
MTBE												ND ND
Styrene ug/l 100 P ND ND ND ND ND ND ND												ND ND
Tert Amyl Methyl Ether		U										ND ND
TBA			100	1								ND ND
Tetrachloroethylene (PCE)			12	N	TID.	11,12	T,D	TID	11,0	11,0	11,12	1,12
Toluene					ND	ND	ND	ND	ND	ND	ND	ND
Total Trihalomethanes ug/l 80 P ND ND ND ND ND ND ND												ND
Trichloroethylene (TČE)			80									ND
Vinyl chloride (VC) ug/l 0.5 P ND ND ND ND ND ND ND												ND
Xylenes (Total) ug/l 1750 P ND ND ND ND ND ND ND												ND
Others I.4-Dioxane ug/l 1 N ND ND ND ND ND 0.11 0.13												ND
1,4-Dioxane ug/l l N ND ND ND ND ND 0.11 0.13		ug/I	1/50	P	ND	ND	ND	ND	ND	ND	ND	ND
		110/1	1	N	ND	MD	MD	ND	MD	0.11	0.12	0.15
			6									0.15 ND
Surfactants mg/l 0.5 S ND ND ND ND ND ND ND ND												ND
											1	0.93

TABLE 3.2 WEST COAST BASIN WATER QUALITY RESULTS REGIONAL GROUNDWATER MONITORING - WATER YEAR 2021-2022 Page 18 of 22

			Type	PM-5 Columbia Park											
Constituents	Units	MCL	MCL T	Zor		Zo	ne 2	Zo	ne 3	Zor	ne 4	Zo	ne 5	Zoi	ne 6
Canada Minada	U,	M	ž	5/3/2022	8/19/2022	5/3/2022	8/19/2022	5/3/2022	8/19/2022	5/3/2022	8/19/2022	5/3/2022	8/19/2022	5/3/2022	8/19/2022
General Minerals Alkalinity	mg/l			700	700	910	910	430	420	300	300	190	190	220	210
Anion Sum	meq/l			17	17	19	19	9.5	9.3	7.1	6.9	36	36	13	13
Bicarbonate as HCO3	mg/l			850	860	1100	1100	520	500	370	360	230	230	260	260
Boron	mg/l	1	N	2.4	2.4	1.8	1.9	0.36	0.36	0.18	0.18	0.19	0.19	0.21	0.2
Bromide	ug/l			1.5	1.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Calcium, Total	mg/l			12.8	12.7	6.99	7.2	13.6	13.6	26.1	26.2	255	267	88.7	87.3
Carbon Dioxide	mg/l	<u> </u>		621 ND	621	812 ND	804	379 ND	370	272 ND	264 ND	177 ND	172 ND	194 ND	189 ND
Carbonate as CO3 Cation Sum	mg/l meq/l			15	ND 16	17	5.6 18	8.9	6.8 8.9	ND 6.5	6.6	31	32	12	12
Chloride	mg/l	500	S	110	100	17	17	33	32	35	34	810	820	160	160
Fluoride	mg/l	2	P	0.55	0.54	0.26	0.26	0.24	0.24	0.27	0.28	ND	ND	0.29	0.29
Hydroxide as OH, Calculated	mg/l			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Iodide	ug/l			490	540	59	66	85	98	47	52	14	16	55	56
Nitrate (as NO3)	mg/l	45	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Nitrate as Nitrogen	mg/l	10	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Nitrite, as Nitrogen	mg/l	1	P	ND 15	ND 15	ND 13	ND 13	ND 17	ND 16	ND 12	ND 12	ND 13	ND 13	ND 7.1	ND 6.7
Potassium, Total Sodium, Total	mg/l mg/l			310	320	370	390	170	170	90	91	290	300	130	130
Sulfate	mg/l	500	S	ND	ND	ND	ND	ND	ND	ND	ND	450	440	180	190
Total Dissolved Solid (TDS)	mg/l	1000	S	980	1000	1100	1100	500	520	360	390	2000	2200	740	740
Nitrate + Nitrite, as Nitrogen	mg/l	10	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
General Physical Properties															
Apparent Color	ACU	15	S	250	300	620	620	100	60	22	20	5	ND	ND	ND
Hardness (Total, as CaCO3)	mg/l			55.2	55.4	37.8	39.4	62.7	63.3	115	117	895	941	303 7.94	300 8.14
Lab pH	Units			8.07	8.22	8.16	8.31	8.21	8.34	8.03	8.21	7.59	7.87		
Langelier Index - 25 degree Odor	None	3	S	0.474 ND	0.617 10	0.399 ND	0.562 ND	0.507 ND	0.622 ND	0.487	0.66 ND	0.627 ND	0.912 ND	0.717 ND	0.889 ND
Specific Conductance	ımho/cn	1600	S	1600	1700	1700	1800	880	900	660	680	3800	4000	1300	1300
Turbidity	NTU	5	S	ND	0.1	ND	0.35	ND	0.3	ND	0.1	0.15	0.25	ND	0.3
Metals															
Aluminum, Total	ug/l	1000	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Antimony, Total	ug/l	6	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Arsenic, Total	ug/l	10	P	0.51	0.56	3.1	3.3	0.73	0.73	0.58	0.64	1	0.89	ND	ND
Barium, Total	ug/l	1000	_	89 ND	89 ND	21	22	26	26	22	22	92 ND	97 ND	160	160
Beryllium, Total Cadmium, Total	ug/l ug/l	5	P P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Chromium, Total	ug/l	50	P	0.76	0.88	2.6	2.9	0.4	0.43	ND	ND	ND	ND	ND	ND
Hexavalent Chromium (Cr VI)	ug/l	10	P	0.14	0.19	0.13	0.17	0.077	0.13	0.057	0.062	ND	ND	ND	ND
Copper, Total	ug/l	1300	P	0.76	0.57	2.6	2.9	ND	ND	ND	ND	ND	ND	ND	ND
Iron, Total	mg/l	0.3	S	0.19	0.18	0.28	0.29	0.048	0.048	0.039	0.036	0.092	0.096	ND	ND
Lead, Total	ug/l	15	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Magnesium, Total	mg/l			5.64	5.75	4.93	5.2	6.95	7.13	12.2	12.5	63	66.9	19.8	19.9
Manganese, Total	ug/l	50	S	43	43	26	27	35 ND	36	26	25	250	240	120	120
Mercury Nickel, Total	ug/l ug/l	100	P P	ND ND	ND ND	ND ND	0.058 ND	ND ND	ND ND	ND ND	0.067 ND	ND ND	0.058 ND	ND ND	0.079 ND
Selenium, Total	ug/l	50	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Silver, Total	ug/l	100	S	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Thallium, Total	ug/l	2	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Zinc, Total	ug/l	5000	S	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Volatile Organic Compounds															
1,1-Dichloroethane	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethylene	ug/l	6	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane Benzene	ug/l ug/l	0.5	P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Carbon Tetrachloride	ug/l	0.5	P	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	ug/l	70	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloromethane (Methyl Chloride)	ug/l			ND	ND	ND	0.54	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethylene	ug/l	6	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Di-Isopropyl Ether	ug/l		Ļ	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	ug/l	300	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethyl Tert Butyl Ether Freon 11	ug/l ug/l	150	P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Freon 11 Freon 113	ug/l ug/l	1200	_	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Methylene Chloride	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MTBE	ug/l	13	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Styrene	ug/l	100	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tert Amyl Methyl Ether	ug/l			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TBA	ug/l	12	N	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethylene (PCE)	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	ug/l	150	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total Trihalomethanes trans-1,2-Dichloroethylene	ug/l	10	P P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Trichloroethylene (TCE)	ug/l ug/l	5	P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Vinyl chloride (VC)	ug/l	0.5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Xylenes (Total)	ug/l	1750		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Others															
1,4-Dioxane	ug/l	1	N	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.076	ND
Perchlorate	ug/l	6	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Surfactants	mg/l	0.5	S	ND	0.056	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total Organic Carbon	mg/l	1	ı	29	35	20	25	5.7	7	3	3.5	1.8	2.1	1.3	1.3

TABLE 3.2 WEST COAST BASIN WATER QUALITY RESULTS REGIONAL GROUNDWATER MONITORING - WATER YEAR 2021-2022 Page 19 of 22

			Type	PM-6 Madrona Marsh											
Constituents	Units	MCL	MCL T	Zor			ne 2	Zor	ne 3		ne 4		ne 5	Zor	ne 6
Consul Minarala	Ü,	M	ž	4/8/2022	9/1/2022	4/8/2022	9/1/2022	4/8/2022	9/1/2022	4/8/2022	9/1/2022	4/8/2022	9/1/2022	4/8/2022	9/1/2022
General Minerals Alkalinity	mg/l			430	420	130	120	150	140	240	230	160	160	160	150
Anion Sum	meq/l			65	63	90	92	210	220	7.3	7.2	47	45	9	9.1
Bicarbonate as HCO3	mg/l			530	510	150	150	180	170	290	280	200	190	190	190
Boron	mg/l	1	N	0.72	0.75	0.56	0.56	0.23	0.23	0.24	0.24	0.38	0.37	0.18	0.18
Bromide	ug/l			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Calcium, Total	mg/l			270	261	220	216	1170	1170	21.9	21.9	205	195	56	55.1
Carbon Dioxide	mg/l			392 ND	374	114 ND	110 ND	141 ND	129	211	205 ND	150 ND	146 ND	140 ND	137 ND
Carbonate as CO3 Cation Sum	mg/l meq/l			58	ND 59	81	83	200	ND 200	6.9	6.8	42	41	8.7	8.6
Chloride	mg/l	500	S	2000	1900	3100	3200	7400	7500	88	89	1200	1200	130	130
Fluoride	mg/l	2	P	ND	ND	ND	ND	ND	ND	0.46	0.44	ND	ND	0.25	0.24
Hydroxide as OH, Calculated	mg/l			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Iodide	ug/l			140	110	530	480	200	190	63	52	57	53	35	36
Nitrate (as NO3)	mg/l	45	P	74	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Nitrate as Nitrogen	mg/l	10	P	17 ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Nitrite, as Nitrogen	mg/l	1	P	ND 37	ND 44	ND 57	ND 71	ND 110	ND 140	ND 7.1	ND 6.6	ND 20	ND 23	ND 6.2	ND 5.7
Potassium, Total Sodium, Total	mg/l mg/l			640	670	1400	1400	1700	1800	100	100	590	600	100	100
Sulfate	mg/l	500	S	ND	ND	ND	ND	74	86	ND	ND	400	390	110	120
Total Dissolved Solid (TDS)	mg/l	1000	S	3700	3800	5100	5700	11000	15000	390	390	2700	2600	510	530
Nitrate + Nitrite, as Nitrogen	mg/l	10	P	17	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
General Physical Properties															
Apparent Color	ACU	15	S	220	250	5	5	7.5	10	10	20	15	20	5	5
Hardness (Total, as CaCO3)	mg/l			1470	1430	987	969	6020	6000	110	110	786 7.8	746 7.67	203	199 7.95
Lab pH	Units			7.86	7.99	7.79	7.88	7.48	7.5	8.36	8.22			8.04	
Langelier Index - 25 degree Odor	None	3	S	1.18	1.28	0.453 ND	0.484 ND	0.838 50	0.814 16	0.635 ND	0.477 ND	0.621 ND	0.475 ND	0.521 ND	0.392 ND
Specific Conductance	ımho/cn	1600	S	5600	6300	8200	9300	18000	20000	700	740	4800	5000	900	960
Turbidity	NTU	5	S	2.6	5.8	0.4	0.25	0.2	0.35	0.6	0.75	2.5	2.9	0.2	0.25
Metals															
Aluminum, Total	ug/l	1000	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Antimony, Total	ug/l	6	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Arsenic, Total	ug/l	10	P	ND	ND	ND	ND	0.42	ND	ND	ND	2	2	1.8	1.8
Barium, Total	ug/l	1000	P P	770 ND	740 ND	630 ND	610	2900 ND	2600 ND	26 ND	26 ND	120 ND	110 ND	16 ND	16 ND
Beryllium, Total Cadmium, Total	ug/l ug/l	5	P	ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND	ND
Chromium, Total	ug/l	50	P	1	1.1	ND	ND	0.4	ND	ND	ND	ND	ND	ND	ND
Hexavalent Chromium (Cr VI)	ug/l	10	P	ND	ND	ND	ND	ND	ND	ND	0.08	ND	ND	ND	ND
Copper, Total	ug/l	1300	P	1.1	1.3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Iron, Total	mg/l	0.3	S	0.042	0.045	0.14	0.13	0.074	0.065	0.088	0.091	0.6	0.58	0.19	0.2
Lead, Total	ug/l	15	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Magnesium, Total	mg/l	50	C	194	188	106	104	750	746	13.5	13.3	66.4	62.8	15.5	15
Manganese, Total Mercury	ug/l ug/l	50	S P	8.2 ND	7.1 ND	170 ND	170 ND	68 ND	65 ND	58 ND	59 ND	450 ND	440 ND	73 ND	72 ND
Nickel, Total	ug/l	100	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND
Selenium, Total	ug/l	50	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Silver, Total	ug/l	100	S	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Thallium, Total	ug/l	2	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Zinc, Total	ug/l	5000	S	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Volatile Organic Compounds			_	2.775	3.775	170		1 170					1.77	170	
1,1-Dichloroethane 1,1-Dichloroethylene	ug/l	5	P P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,1-Dichloroethylene	ug/l ug/l	0.5	P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Benzene	ug/l	1	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Tetrachloride	ug/l	0.5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	ug/l	70	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloromethane (Methyl Chloride)	ug/l			ND	1.2	ND	0.58	ND	ND	ND	0.57	ND	0.82	ND	0.91
cis-1,2-Dichloroethylene	ug/l	6	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Di-Isopropyl Ether	ug/l	200	D	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Ethylbenzene Ethyl Tert Butyl Ether	ug/l ug/l	300	P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Freon 11	ug/l ug/l	150	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Freon 113	ug/l	1200	_	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene Chloride	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MTBE	ug/l	13	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Styrene	ug/l	100	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tert Amyl Methyl Ether	ug/l	10	3.7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TBA Totacohloroothylono (BCE)	ug/l	12	N	NID	NIP	NID	NID	NID	NID	NID	NID	NID	NID	NID	NID
Tetrachloroethylene (PCE) Toluene	ug/l ug/l	5 150	P P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Total Trihalomethanes	ug/l	80	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethylene	ug/l	10	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethylene (TCE)	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl chloride (VC)	ug/l	0.5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Xylenes (Total)	ug/l	1750	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Others															
1,4-Dioxane	ug/l	1	N	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Perchlorate	ug/l	6	P	ND	ND	ND	ND	ND	ND 0.052	ND	ND	ND	ND	ND	ND
Surfactants Total Organic Carbon	mg/l	0.5	S	ND 5.1	ND 8.5	ND 2.3	ND 2	ND 2.1	0.052	ND 2	ND 1.8	ND 2.3	ND 2.1	ND 1.5	ND 1.2
Total Organic Carbon	mg/l	<u> </u>	Ь	5.1	0.3	2.3		2.1	1.7		1.8	2.3	2.1	1.5	1.3

TABLE 3.2 WEST COAST BASIN WATER QUALITY RESULTS REGIONAL GROUNDWATER MONITORING - WATER YEAR 2021-2022

Page 20 of 22

			ype					Westch	ester #1				
Constituents	Units	MCL	MCL Type	Zor			ne 2		ne 3	Zor		Zor	
General Minerals	Ď	M	M	5/19/2022	9/9/2022	5/19/2022	9/9/2022	5/19/2022	9/9/2022	5/19/2022	9/9/2022	5/19/2022	9/9/2022
Alkalinity	mg/l			780	780	540	530	430	430	350	340	280	280
Anion Sum	meq/l			19	20	13	13	11	11	11	11	9.5	9.4
Bicarbonate as HCO3	mg/l			950	960	650	650	530	530	420	410	350	340
Boron	mg/l	1	N	1.7	1.7	0.79	0.82	0.39	0.4	0.24	0.24	0.23	0.23
Bromide Calcium, Total	ug/l mg/l			0.72 49.9	0.7 44	ND 31.2	ND 30.4	ND 58.5	ND 52.7	ND 71.9	ND 68.6	ND 63.2	ND 60.3
Carbon Dioxide	mg/l			693	695	479	471	389	386	313	302	256	246
Carbonate as CO3	mg/l			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cation Sum	meq/l			19	19	12	12	11	10	10	10	9	8.8
Chloride	mg/l	500	S	120	130	76	77	68	69	70	71	72	72
Fluoride Hydroxide as OH, Calculated	mg/l mg/l	2	P	0.23 ND	0.21 ND	0.22 ND	0.21 ND	0.22 ND	0.22 ND	0.24 ND	0.23 ND	0.29 ND	0.28 ND
Iodide	ug/l			27	190	78	100	61	79	56	61	48	53
Nitrate (as NO3)	mg/l	45	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Nitrate as Nitrogen	mg/l	10	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Nitrite, as Nitrogen	mg/l	1	P	ND 19	ND 19	ND 17	ND 18	ND 12	ND 12	ND 10	ND 10	ND 7.8	ND 7.8
Potassium, Total Sodium, Total	mg/l mg/l			330	330	200	210	130	130	94	94	85	85
Sulfate	mg/l	500	S	19	15	ND	ND	19	13	84	85	88	90
Total Dissolved Solid (TDS)	mg/l	1000	S	1100	1100	720	710	580	580	580	560	520	500
Nitrate + Nitrite, as Nitrogen	mg/l	10	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
General Physical Properties Apparent Color	ACU	15	S	400	400	50	50	20	20	5	7.5	7.5	7.5
Hardness (Total, as CaCO3)	mg/l	13	3	208	186	148	146	244	223	296	285	256	247
Lab pH	Units			8.03	8.16	8.05	8.2	7.96	8.12	7.91	8.05	7.9	8.04
Langelier Index - 25 degree	None			1.06	1.13	0.766	0.898	0.875	0.989	0.825	0.936	0.674	0.798
Odor	TON	3	S	2	4	ND 1200	4	2	ND	ND 070	ND	ND	ND
Specific Conductance Turbidity	umho/cm NTU	1600	S	1900 0.2	0.15	1200 0.95	1100 0.1	1000 0.4	910 0.25	970 0.3	880 0.25	880 0.55	800 0.45
Metals	NIU	3	٥	0.2	0.13	0.93	0.1	0.4	0.23	0.3	0.23	0.55	0.43
Aluminum, Total	ug/l	1000	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Antimony, Total	ug/l	6	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Arsenic, Total	ug/l	10	P	ND	ND	ND	ND	0.79	0.66	ND	ND	0.44	0.48
Barium, Total Beryllium, Total	ug/l ug/l	1000	P	100 ND	110 ND	110 ND	110 ND	70 ND	69 ND	76 ND	77 ND	66 ND	67 ND
Cadmium, Total	ug/l	5	P	ND	ND	ND	ND	0.71	ND	ND	ND	ND	ND
Chromium, Total	ug/l	50	P	1.9	1.8	0.22	0.23	ND	ND	ND	ND	ND	ND
Hexavalent Chromium (Cr VI)	ug/l	10	P	0.21	0.35	0.066	0.086	ND	ND	ND	ND	ND	ND
Copper, Total	ug/l	1300	P	0.87	0.73	ND 0.12	0.74	ND 0.25	ND 0.22	ND 0.15	ND 0.14	ND 0.27	ND 0.27
Iron, Total Lead, Total	mg/l ug/l	0.3	S	0.18 ND	0.16 ND	0.13 ND	0.12 ND	0.25 ND	0.23 ND	0.15 ND	0.14 ND	0.27 ND	0.27 ND
Magnesium, Total	mg/l	13	1	20.2	18.5	17	17.1	23.9	22.3	28.1	27.6	23.8	23.3
Manganese, Total	ug/l	50	S	82	76	44	45	140	130	120	120	120	120
Mercury	ug/l	2	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Nickel, Total	ug/l	100 50	P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Selenium, Total Silver, Total	ug/l ug/l	100	P	ND ND	ND ND	ND ND	0.47	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Thallium, Total	ug/l	2	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Zinc, Total	ug/l	5000	S	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Volatile Organic Compounds		لـــا	,	170	170	110	110	110	110) VP	110	
1,1-Dichloroethylene	ug/l ug/l	5	P P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,2-Dichloroethane	ug/l	0.5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzene	ug/l	1	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Tetrachloride	ug/l	0.5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene Chloromethana (Methyl Chlorida)	ug/l	70	P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Chloromethane (Methyl Chloride) cis-1,2-Dichloroethylene	ug/l ug/l	6	P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Di-Isopropyl Ether	ug/l	Ť	_	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	ug/l	300	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethyl Tert Butyl Ether	ug/l	150	,	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Freon 11 Freon 113	ug/l	150 1200	P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Methylene Chloride	ug/l ug/l	5	P	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
MTBE	ug/l	13	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Styrene	ug/l	100	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tert Amyl Methyl Ether	ug/l		Ļ	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TBA Tetrachloroethylene (PCE)	ug/l		N P	NID	ND	ND	NID	NID	NID	NID	ND	ND	ND
Toluene (PCE)	ug/l ug/l	5 150	P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Total Trihalomethanes	ug/l	80	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethylene	ug/l	10	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethylene (TCE)	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl chloride (VC)	ug/l	0.5	P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Xylenes (Total) Others	ug/l	1750	ľ	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dioxane	ug/l	1	N	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Perchlorate	ug/l	6	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
													100
Surfactants Total Organic Carbon	mg/l mg/l	0.5	S	ND 19	ND 24	ND 6.8	ND 7.2	ND 3	ND 3.1	ND 1.7	ND 1.5	ND 1.4	ND 1.4

TABLE 3.2 WEST COAST BASIN WATER QUALITY RESULTS REGIONAL GROUNDWATER MONITORING - WATER YEAR 2021-2022 Page 21 of 22

			'pe					Wilmin	gton #1				
Constituents	Units	MCL	MCL Type	Zor	ne 1	Zor	ne 2	Zor		Zor	ne 4	Zor	ne 5
	Un	Ĭ	MC	2/14/2022	8/8/2022	2/14/2022	8/8/2022	2/14/2022	8/8/2022	2/14/2022	8/8/2022	2/14/2022	8/8/2022
General Minerals Alkalinity	mg/l			130	130	160	160	160	160	140	140	160	170
Anion Sum	meq/l			15	15	26	3.8	28	100	15	19	15	170
Bicarbonate as HCO3	mg/l			160	130	200	160	190	160	170	140	190	170
Boron	mg/l	1	N	0.25	0.25	0.24	0.25	0.3	0.29	0.22	0.22	0.21	0.22
Bromide Calcium, Total	ug/l mg/l			2600 86	2700	3100 180	3100 180	3700 150	3500 150	950 62	1500 97	1000 96	1200 100
Carbon Dioxide	mg/l			2.1		4.1		9.8		2.2		ND	
Carbonate as CO3	mg/l			ND	ND	ND		ND	ND	ND	ND	2.5	ND
Cation Sum	meq/l			13	14	23	23	27		13	18	14	
Chloride Fluoride	mg/l mg/l	500	S P	430 0.12	450 0.13	720 0.062	16 0.065	830 0.07	750	310 0.16	460 0.15	300 0.14	320
Hydroxide as OH, Calculated	mg/l		1	ND	ND	ND	0.003	ND	ND	ND	ND	ND	ND
Iodide	ug/l			710	1	380	480	520		22		82	
Nitrate (as NO3)	mg/l	45	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Nitrate as Nitrogen Nitrite, as Nitrogen	mg/l mg/l	10	P P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Potassium, Total	mg/l	1	1	10	11	9.4	9.1	10	9.5	6.3	8	7.6	8.2
Sodium, Total	mg/l			150	160	230	220	370	300	190	230	150	170
Sulfate	mg/l	500	S	ND	4.1	100	5.4	56	62	150	160	170	160
Total Dissolved Solid (TDS)	mg/l	1000	S	890 ND	1100 ND	1600 ND	1700 ND	1700 ND	1700 ND	840 ND	1100 ND	860 ND	900 ND
Nitrate + Nitrite, as Nitrogen General Physical Properties	mg/l	10	ľ	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Apparent Color	ACU	15	S	ND	5	5	5	10	10	10	10	5	10
Hardness (Total, as CaCO3)	mg/l			330	370	650	640	530		240		370	
Lab pH	Units			8.1		7.9		7.5		8.1		8.3	
Langelier Index - 25 degree Odor	None TON	3	S	17	1	17	1	200	1	4	1	17	1
Specific Conductance	amho/cn	1600	S	1500	1600	2600	2500	2900	2700	1500	2000	1500	1600
Turbidity	NTU	5	S	0.13	0.15	0.26	0.2	ND	0.3	ND	0.15	0.24	4.8
Metals													
Aluminum, Total Antimony, Total	ug/l	1000	P P	ND ND	ND ND	ND ND	ND ND	ND ND		ND ND	ND ND	ND ND	
Arsenic, Total	ug/l ug/l	10	P	ND ND	ND ND	ND ND	ND 1	ND ND		ND ND	ND ND	ND ND	
Barium, Total	ug/l	1000	P	17	19	13	12	23		28	39	100	
Beryllium, Total	ug/l	4	P	ND	ND	ND	ND	ND		ND	ND	ND	
Cadmium, Total	ug/l	5	P	ND	ND	ND	ND	ND		ND	ND	ND	
Chromium, Total Hexavalent Chromium (Cr VI)	ug/l ug/l	50 10	P P	ND ND	ND 	ND ND	ND ND	ND 0.037	0.043	ND ND	ND 	ND 0.047	ND
Copper, Total	ug/l	1300	P	ND	ND	ND	ND	ND		ND	ND	ND	
Iron, Total	mg/l	0.3	S	0.015	0.017	0.047	0.046	ND	ND	0.012	0.016	0.083	0.27
Lead, Total	ug/l	15	P	ND 20	ND	ND 40	ND	ND		ND	ND	ND	
Magnesium, Total Manganese, Total	mg/l ug/l	50	S	28 35	31 36	49 22	47 22	38 5.3		22 11	35 16	32 83	35
Mercury	ug/l	2	P	ND	ND	ND	ND	ND		ND	ND	ND	
Nickel, Total	ug/l	100	P	ND	ND	ND	ND	ND		ND	ND	ND	
Selenium, Total	ug/l	50	P	ND	ND	ND	5.7	ND		ND	ND	ND	
Silver, Total Thallium, Total	ug/l ug/l	100	S P	ND ND	ND ND	ND ND	ND ND	ND ND		ND ND	ND ND	ND ND	
Zinc, Total	ug/l	5000	S	ND	ND	ND ND	ND	ND		ND ND	ND	ND ND	
Volatile Organic Compounds													
1,1-Dichloroethane	ug/l	5	P	ND	ND	ND		ND	ND	ND	ND	ND	
1,1-Dichloroethylene 1,2-Dichloroethane	ug/l ug/l	0.5	P P	ND ND	ND ND	ND ND		ND ND	ND	ND ND	ND ND	ND ND	
Benzene	ug/l ug/l	1	P	ND ND	ND	ND ND		ND	ND	ND ND	ND	ND	
Carbon Tetrachloride	ug/l	0.5	P	ND	ND	ND		ND	ND	ND	ND	ND	
Chlorobenzene	ug/l	70	P	ND	ND	ND		ND	ND	ND	ND	ND	
Chloromethane (Methyl Chloride) cis-1,2-Dichloroethylene	ug/l ug/l	6	P	ND ND	ND ND	ND ND		ND ND	ND ND	ND ND	ND ND	ND ND	
Di-Isopropyl Ether	ug/l	0	1	6.2	7.3	19		13	20	ND	ND	3.5	
Ethylbenzene	ug/l	300	P	ND	ND	ND		ND	ND	ND	ND	ND	
Ethyl Tert Butyl Ether	ug/l			ND	ND	ND		ND	ND	ND	ND	ND	
Freon 11 Freon 113	ug/l	1200	P P	ND ND	ND ND	ND ND		ND ND	ND ND	ND ND	ND ND	ND ND	
Methylene Chloride	ug/l ug/l	1200	P	ND ND	ND ND	ND ND		ND ND	ND ND	ND ND	ND ND	ND ND	
MTBE	ug/l	13	P	ND	ND	ND		ND	ND	3.6	15	26	
Styrene	ug/l	100	P	ND	ND	ND		ND	ND	ND	ND	ND	
Tert Amyl Methyl Ether	ug/l	12) T	ND 120	ND	ND 120		ND	ND	ND 10	ND	ND	
TBA Tetrachloroethylene (PCE)	ug/l ug/l	12	N P	120 ND	ND	120 ND		84 ND	ND	ND	ND	61 ND	
Toluene	ug/l	150	P	ND	ND	ND		ND	ND	ND	ND	ND	
Total Trihalomethanes	ug/l	80	P	ND	ND	ND		ND		ND		ND	
trans-1,2-Dichloroethylene	ug/l	10	P	ND	ND	ND		ND	ND	ND	ND	ND	
Trichloroethylene (TCE)	ug/l	5	P	ND	ND ND	ND ND		ND ND	ND ND	ND ND	ND ND	ND ND	
Vinyl chloride (VC) Xylenes (Total)	ug/l ug/l	0.5 1750	P P	ND ND	ND 	ND ND		ND ND	ND 	ND ND	ND 	ND ND	
Others	ug/1	1,50	1	110	-	110		110		140		110	-
1,4-Dioxane	ug/l	1	N	ND		ND	ND	ND		ND		ND	
Perchlorate	ug/l	6	P	ND		ND	ND	ND 0.51		ND		ND	
Surfactants Total Organic Carbon	mg/l	0.5	S	0.65	1.1	0.66	1.1	0.51	1.2	0.2	0.73	0.64	1.6
Total Organic Carbon	mg/l			3	1.1	3.9	1.1	4.2	1.2	2.1	0.73	3.8	1.6

TABLE 3.2 WEST COAST BASIN WATER QUALITY RESULTS REGIONAL GROUNDWATER MONITORING - WATER YEAR 2021-2022

Page 22 of 22

			ype					Wilmin	gton #2				
Constituents	Units	MCL	MCL Type	Zor			ne 2	Zor	ne 3	Zor			ne 5
General Minerals	n	Σ	Σ	3/1/2022	8/9/2022	3/1/2022	8/9/2022	3/1/2022	8/9/2022	3/1/2022	8/9/2022	3/1/2022	8/9/2022
Alkalinity	mg/l			240	210	430	440	140	140	270	230	160	160
Anion Sum	meq/l			18	20	26	27	16	17	11	10	67	
Bicarbonate as HCO3 Boron	mg/l mg/l	1	N	290 0.55	210 0.57	520 1.6	390 1.6	170 0.18	0.19	330 0.64	220 0.61	200 0.52	160 0.51
Bromide	ug/l	1	14	1900	2100	4800	5500	3500	3600	1300	1200	6500	6400
Calcium, Total	mg/l			10	12	26	27	88	92	20	18	200	
Carbon Dioxide	mg/l			ND		4.3		2.2		2.2		4.1	
Carbonate as CO3	mg/l			4.7	8.1	6.7	47	ND	ND	5.4		ND	
Cation Sum Chloride	meq/l mg/l	500	S	16 480	18 550	23 630	25 650	15 490	16 510	10 180	9.5 190	62 2000	2100
Fluoride	mg/l	2	P	0.53	0.55	0.48	0.44	0.15	0.15	0.72	0.72	0.21	
Hydroxide as OH, Calculated	mg/l			ND	ND	ND	ND	ND	ND	ND		ND	
Iodide	ug/l	L.,	Ļ	150		1600	200	1200	1400	380		57	
Nitrate (as NO3) Nitrate as Nitrogen	mg/l mg/l	45 10	P	ND ND	ND ND	3.7 0.83	ND ND	2.7 0.6	ND ND	ND ND	ND ND	ND ND	ND ND
Nitrite, as Nitrogen	mg/l	10	P	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND
Potassium, Total	mg/l			11	10	14	13	10	11	5.7	5.3	19	
Sodium, Total	mg/l			340	380	460	490	180	190	190	180	1000	
Sulfate	mg/l	500	S	ND 1000	ND	ND	ND 1500	ND 020	ND	ND	ND	330	340
Total Dissolved Solid (TDS) Nitrate + Nitrite, as Nitrogen	mg/l mg/l	1000	S	1000 ND	1100 ND	0.83	1500 ND	930 0.6	990 ND	600 ND	590 ND	3800 ND	3400
General Physical Properties	mg/I	10	1	110	ND	0.03	ND	0.0	ND	TVD	ND	ND	
Apparent Color	ACU	15	S	ND	10	100	20	10	10	100	20	15	20
Hardness (Total, as CaCO3)	mg/l			59	69	150	150	360	370	85		900	
Lab pH Langelier Index - 25 degree	Units None			8.4		8.3		8.1		8.4		7.9	
Odor	TON	3	S	ND	1	ND	2	ND	ND	17	2	17	2
Specific Conductance	ımho/cn	_		1900	2100	2600	2900	1800	1800	1100	1100	6600	6800
Turbidity	NTU	5	S	0.15	0.75	0.11	0.25	0.12	0.1	0.32	0.35	0.2	0.1
Metals		1000		VID	N.D.	VID	VID	VID	VID	VID		VID	VID
Aluminum, Total Antimony, Total	ug/l ug/l	1000	P P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND		ND ND	ND
Arsenic, Total	ug/l	10	P	ND	ND	1.3	3.6	1	ND	ND		1.7	
Barium, Total	ug/l	1000	_	8.4	9.0	42	50	25	27	14		64	
Beryllium, Total	ug/l	4	P	ND	ND	ND	ND	ND	ND	ND		ND	
Cadmium, Total	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND		ND	
Chromium, Total Hexavalent Chromium (Cr VI)	ug/l ug/l	50 10	P	ND 0.11	ND 0.037	0.16	ND 0.084	ND ND	ND ND	ND 0.22		ND ND	ND
Copper, Total	ug/l	1300		ND	ND	ND	ND	ND	ND	ND		ND	ND
Iron, Total	mg/l	0.3	S	0.018	ND	0.049	0.043	0.039	0.04	0.019	0.019	ND	0.013
Lead, Total	ug/l	15	P	ND	ND	ND	ND	ND	ND	ND		ND	ND
Magnesium, Total Manganese, Total	mg/l ug/l	50	S	8.3 4.9	9.6 5.0	20 7.4	21 8.4	33 14	15	8.6 5.5	8.1	97 46	43
Mercury	ug/l	2	P	ND	ND	ND	ND	ND	ND	ND		ND	43
Nickel, Total	ug/l	100	P	ND	ND	ND	ND	ND	ND	ND		ND	
Selenium, Total	ug/l	50	P	ND	ND	6.7	16	5.3	ND	ND		8.5	
Silver, Total	ug/l	100	S	ND	ND	ND	ND	ND	ND	ND		ND	ND
Thallium, Total Zinc, Total	ug/l ug/l	5000	P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND		ND ND	ND
Volatile Organic Compounds	ug/1	3000		NB	ND	IND	ND	NB	ND	ND		NB	ND
1,1-Dichloroethane	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND		ND	
1,1-Dichloroethylene	ug/l	6	P	ND	ND	ND	ND	ND	ND	ND		ND	
1,2-Dichloroethane Benzene	ug/l ug/l	0.5	P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND		ND ND	
Carbon Tetrachloride	ug/l	0.5		ND	ND	ND	ND	ND	ND	ND		ND	
Chlorobenzene	ug/l	70		ND	ND	ND	ND	ND	ND	ND		ND	
Chloromethane (Methyl Chloride)	ug/l		_	ND	ND	ND	ND	ND	ND	ND		ND	
cis-1,2-Dichloroethylene Di-Isopropyl Ether	ug/l ug/l	6	P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND		ND ND	
Ethylbenzene	ug/l ug/l	300	P	ND ND	ND	ND	ND	ND	ND	ND ND		ND ND	
Ethyl Tert Butyl Ether	ug/l	Ė	Ĺ	ND	ND	ND	ND	ND	ND	ND		ND	
Freon 11	ug/l	150		ND	ND	ND	ND	ND	ND	ND		ND	
Freon 113	ug/l	1200	_	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND		ND ND	
Methylene Chloride MTBE	ug/l ug/l	13	P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND
Styrene	ug/l	100		ND	ND	ND	ND	ND	ND	ND		ND	
Tert Amyl Methyl Ether	ug/l			ND	ND	ND	ND	ND	ND	ND		ND	
TBA	ug/l	12		2		ND	3	ND	ND	ND		ND	
Tetrachloroethylene (PCE) Toluene	ug/l ug/l	5 150	P P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND		ND ND	
Total Trihalomethanes	ug/l ug/l	80	P	ND ND	ND ND	ND	ND	ND	ND ND	ND ND		ND ND	
trans-1,2-Dichloroethylene	ug/l	10	_	ND	ND	ND	ND	ND	ND	ND		ND	
Trichloroethylene (TCE)	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND		ND	
Vinyl chloride (VC)	ug/l	0.5		ND	ND	ND	ND	ND	ND	ND		ND	
Xylenes (Total) Others	ug/l	1750	P	ND		ND		ND	ND	ND		ND	
1,4-Dioxane	ug/l	1	N	ND		ND	ND	ND	ND	ND		ND	
Perchlorate	ug/l	6	P	ND		ND	ND	ND	ND	ND		ND	
							_						
Surfactants Total Organic Carbon	mg/l mg/l	0.5	S	ND 3.6	1.7	ND 16	4.5	ND 1.8	0.709	ND 7.9	4.9	0.18 1.1	0.72

PAGE LEFT INTENTIONALLY BLANK

TABLE 3.3 QUALITY OF REPLENISHMENT WATER Page 1 of 2

			IMPORT	ΓED WA	TER			F	RECYC	LED WA	TER			LOCAL WATER
		Regulatory	Treated Blend of Colorado River & State Water Project	Untreated Colorado River ^B	Untreated State Water Project ^C	WBMWD ELWRF ^D	LADWP TIWRP ^E	WRD LVL AWTF F	WRD ARC AWTF ^G	SDLAC Pomona WRP ^H	SDLAC San Jose Creek East WRP ^H	SDLAC San Jose Creek West WRP ^H	SDLAC Whittier Narrows WRP ^H	Stormwater ^I
Constituent	Units	Limit	2021	2021	2021	2021	2021	2022	2022	2021-2022	2021-2022	2021-2022	2021-2022	2020-2021
Arsenic	μg/L	MCL = 10	ND/ ND	2.1	2.0	0.16	1.2	ND	ND	0.88	1.3	ND	ND	NA
Chloride	mg/L	SMCL = 500	99 ^J / 72 ^J	94 ^J	64 ^J	11.3	135 ^K	48	7.4	141	156	131	119	NA
Hexavalent Chromium	μg/L	MCL = 10	ND / ND	ND	ND	0.30	ND	0.37	0.06	0.16	0.22	0.15	0.11	NA
Iron	μg/L	SMCL = 300	ND / ND	ND	ND	4.8	8.1	ND	0.02	24.3	40	32	35.7	NA
Manganese	μg/L	SMCL = 50	ND / ND	ND	ND	0.13	3.0	2.8	0.81	4.2	5.9	18.1	3.5	NA
Nitrate (as N)	mg/L	MCL = 10	ND / ND	ND	ND	0.29	1.0	2.4	0.59	6.3	5.1	5.9	6.3	NA
Perchlorate	μg/L	MCL = 6	ND / ND	ND	ND	ND	ND	ND	ND	0.44	0.28	0.40	0.27	NA
Tetrachloroethylene (PCE)	μg/L	MCL = 5	ND / ND	ND	ND	ND	ND	ND	ND	ND	ND	0.40	ND	NA
Trichloroethylene (TCE)	μg/L	MCL = 5	ND / ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
Total Dissolved Solids (TDS)	mg/L	SMCL = 1,000	598 ^J / 326 ^J	583 ^J	274 ^J	108	394 ^K	157	70	609	691	620	624	NA
Alkalinity	mg/L	None	125 ^J / 87 ^J	132 ^J	79 ^J	58	NA	NA	NA	156	177	180	165	NA
Boron	μg/L	NL = 1,000	130/180	130	190	230	556 ^K	300	250	320	360	360	300	NA
Chromium, Total	μg/L	MCL = 50	ND / ND	ND	ND	0.31	0.32	ND	ND	1.6	0.82	1.0	0.88	NA
Copper, Total	μg/L	SMCL = 1,000	ND / ND	ND	ND	10.7	3.6	ND	ND	3.8	3.6	4.7	3.4	14
1,4-Dioxane	μg/L	NL = 1	NA	NA	NA	0.02	ND	0.17	ND	0.84	1.0	0.76	0.78	NA
Hardness	mg/L	None	275 ^J / 112 ^J	274 ^J	85 ^J	69	106	44	32	218	226	220	225	578
Lead, Total	μg/L	AL = 15	ND / ND	ND	ND	0.08	0.18	NA	ND	0.22	0.16	0.02	0.17	4.2
Methyl tertiary butyl ether (MTBE)	μg/L	SMCL = 5	ND / ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
Nitrite (as N)	mg/L	MCL = 1	ND / ND	ND	ND	0.07	0.004	0.30	ND	0.10	ND	0.14	0.16	NA
n-Nitrosodimethylamine (NDMA)	ng/L	NL = 10	ND / 2.6	NA	NA	5.6	1.1	0.70	ND	36	62	18	7.0	NA
рН	pH Units	None	8.1 / 8.4	8.3	8.6	7.4	8.0	8.6	7.7	7.4	7.4	7.2	7.4	NA
Selenium	μg/L	MCL = 50	ND / ND	ND	ND	ND	0.33	ND	ND	ND	ND	ND	ND	NA
Specific Conductance	μS/cm	SMCL = 1,600	969 ^J / 564 ^J	940 ^J	480 ^J	56	541	303	38	816	974	850	875	NA
Sulfate	mg/L	SMCL = 500	216 ^J / 71 ^J	208 ^J	54 ^J	5.4	28.3 ^K	0.57	3.4	84	123	109	128	NA
Total Organic Carbon (TOC)	mg/L	None L	2.8 / 2.0	2.96 ^J	2.76 ^J	0.35	0.32	0.37	0.16	6.7	6.2	6.1	5.7	NA
Turbidity	NTU	SMCL = 5	0.04 J / 0.04 J	2.6 ^J	1.33 ^J	0.04	0.04	0.17	0.03	0.20	0.50	0.50	0.10	NA

See footnotes on following page.

TABLE 3.3 QUALITY OF REPLENISHMENT WATER

Page 2 of 2

Notes:

- A = Used at the seawater intrusion barriers: generally, Diemer Plant effluent / Jensen Plant effluent (Data Source #1).
- B = Used at the Montebello Forebay spreading grounds (Lake Mathews) (Data Source #1).
- C = Used at the Montebello Forebay spreading grounds (Silverwood Lake) (Data Source #1).
- D = Effluent of Edward C. Little Water Recycling Facility (ELWRF) before blending with treated water from Colorado River/State Water Project; used at the West Coast Basin Seawater Intrusion Barrier (Data Source #4).
- E = Effluent of Terminal Island Water Reclamation Plant/Advanced Water Treatment Facilities (TIWRP) before blending with treated water from Colorado River/State Water Project; used at the Dominguez Gap Seawater Intrusion Barrier. Estimated values used where reported as "detected, but not quantified" [DNQ] (Data Source #6).
- F = Effluent of Leo J. Vander Lans Advanced Water Treatment Facility (LVL AWTF) before blending with treated water from Colorado River/State Water Project; used at the Alamitos Gap Seawater Intrusion Barrier (Data Source #7).
- G = Effluent of Albert Robles Center for Water Recycling and Environmental Learning Advanced Water Treatment Facility (ARC AWTF); used at the Montebello Forebay spreading grounds (Data Source #8).
- H = Effluent of water reclamation plants (WRPs); used at the Montebello Forebay spreading grounds (Data Source #3).
- I = Average concentration of water samples collected from LACDPW San Gabriel River Monitoring Station S14 from July 2020 through June 2021 (four storm events total) (Data Source #5).
- J = Average concentration for Water Year October 2021 through September 2022 (Data Source #2).
- K = Average concentration in blended water (treatment plant effluent & treated water from Colorado River/State Water Project), which is delivered to the Dominguez Gap Seawater Intrusion Barrier (Data Source #6).
- L = California's 2014 Groundwater Replenishment Using Recycled Water Regulations specify the following TOC limits for groundwater replenishment projects:
 - For surface spreading (surface application), TOC limit = 0.5 mg/L divided by the 120-month running monthly average recycled water contribution (e.g., the TOC limit for a 100% recycled water project would be 0.5 mg/L.) For compliance determination, TOC may be monitored in one of the following: 1) undiluted recycled municipal wastewater prior to application or within the zone of percolation; 2) diluted percolated recycled municipal wastewater, with the value amended to negate the effect of the diluent water; or 3) undiluted recycled municipal wastewater prior to application, with the value amended using a soil-aquifer treatment factor approved by the Division of Drinking Water.
 - For injection (subsurface application), TOC limit = 0.5 mg/L. For compliance determination, TOC is monitored in the applied recycled municipal wastewater.

NA = Not Available/Analyzed NTU = Nephelometric Turbidity Units
ND = Not Detected MCL = Maximum Contaminant Level

NS = Not sampled due to plant shutdown SMCL = Secondary Maximum Contaminant Level

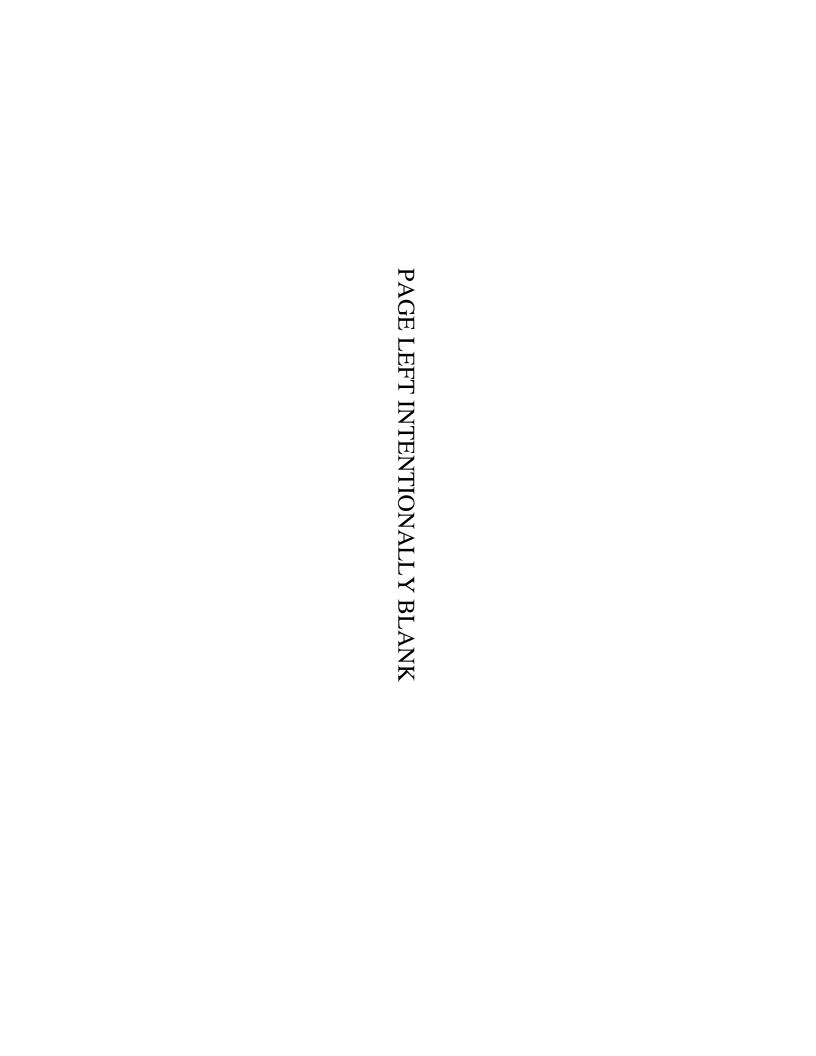
mg/L = milligrams per liter AL = Action Level $\mu g/L = micrograms per liter$ NL = Notification Level

 μ S/cm = microSiemen per centimeter WRP = Water Reclamation Plant

LACDPW = Los Angeles County Department of Public Works

LADWP = Los Angeles Department of Water and Power

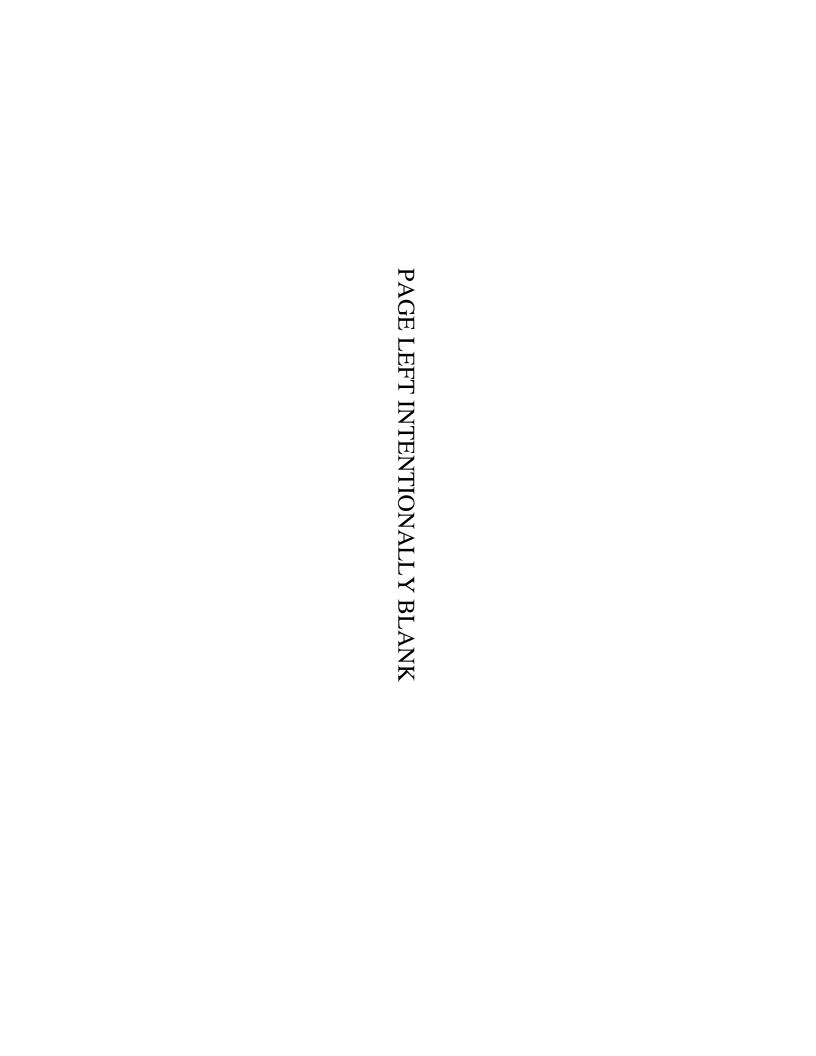
MWD = Metropolitan Water District of Southern California


SDLAC = County Sanitation Districts of Los Angeles County

WBMWD = West Basin Municipal Water District

WRD = Water Replenishment District of Southern California

Sources of Data:


- (1) 2021 Water Quality Report to MWD Member Agencies (Metropolitan Water District of Southern California, March 2022)
- (2) Table D, Monthly Analyses of the District Water Supplies (Metropolitan Water District of Southern California, October 2021 September 2022)
- (3) October 2021 September 2022 Annual Monitoring Report, Montebello Forebay Groundwater Recharge (County Sanitation Districts of Los Angeles County [SDLAC], December 15, 2022)
- (4) Annual West Coast Basin Barrier Project Monitoring Report for 2021, Edward C. Little Water Recycling Facility (West Basin Municipal Water District [WBMWD], March 31, 2022)
- (5) Annual stormwater monitoring data provided by Los Angeles County (Los Angeles County Department of Public Works [LACDPW])
- (6) Annual Monitoring Report January-December 2021, Harbor Water Recycling/Dominguez Gap Barrier Project (City of Los Angeles, Bureau of Sanitation)
- (7) 2022 Preliminary Annual Summary Data for Alamitos Barrier Recycled Water Project, Leo J. Vander Lans Water Treatment Facility.
- (8) 2022 Preliminary Annual Summary Data for Albert Robles Center for Water Recycling and Environmental Learning Advanced Water Treatment Facility (ARC-AWTF).

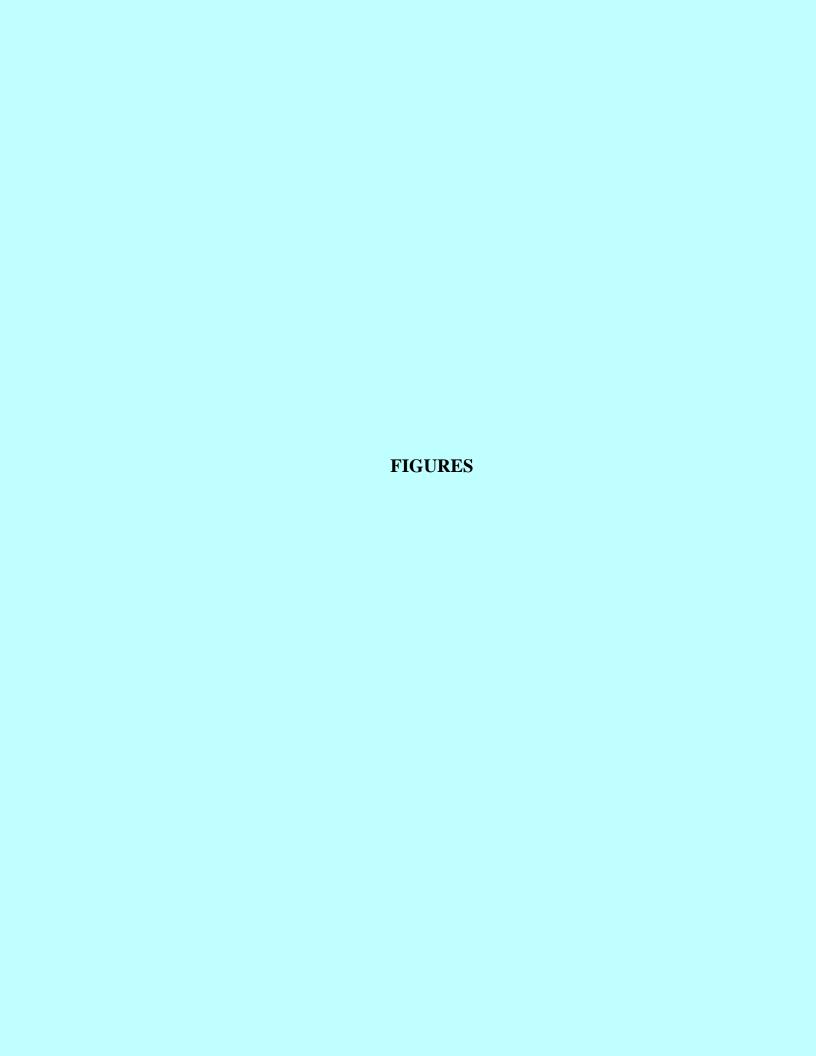
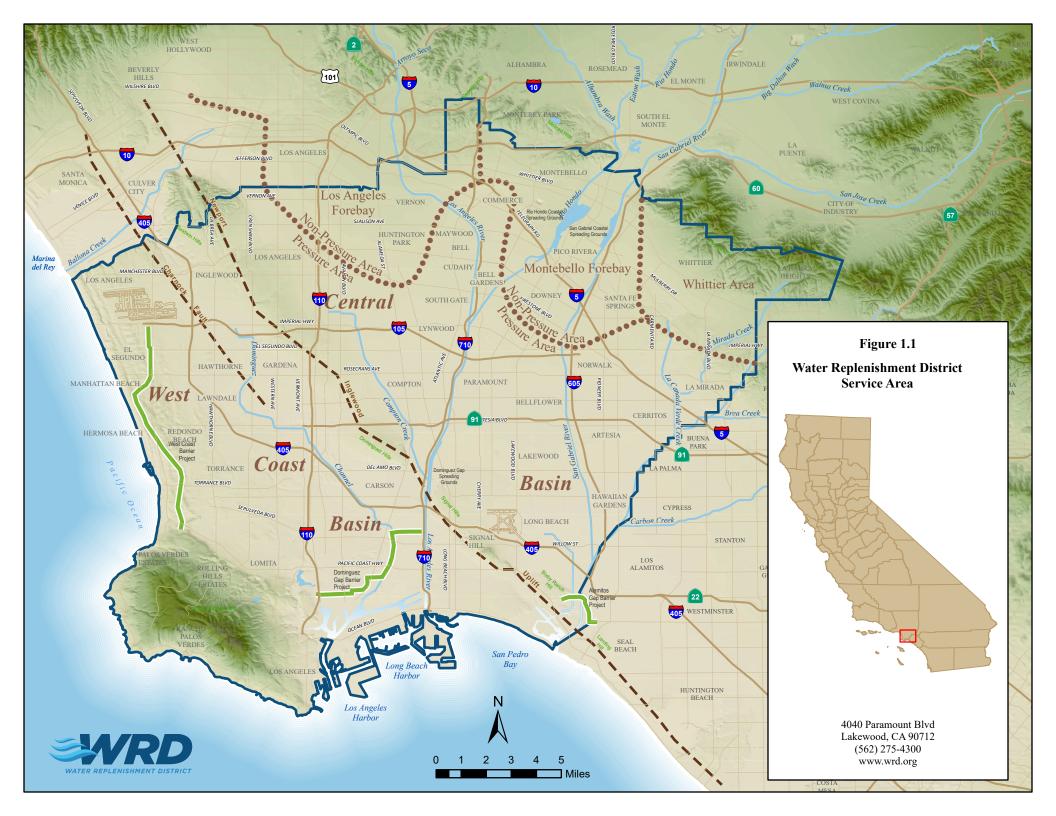
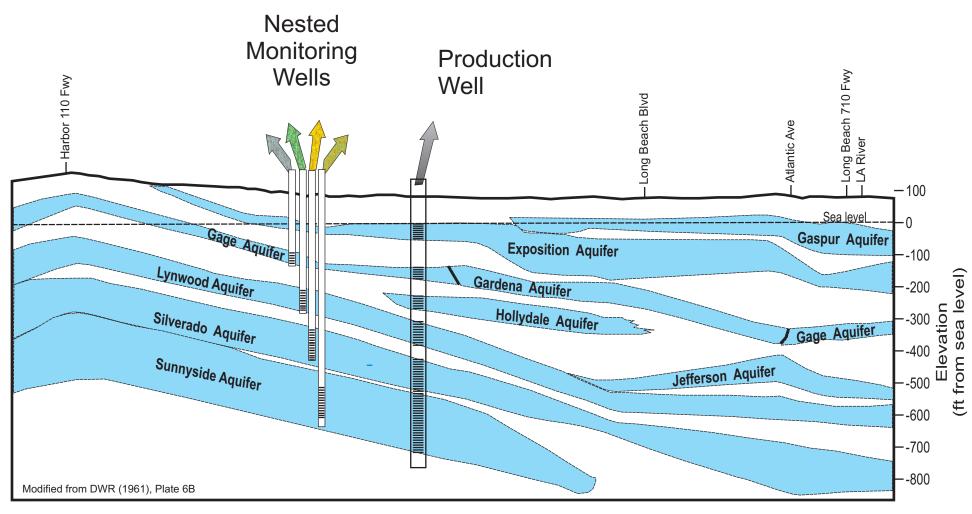
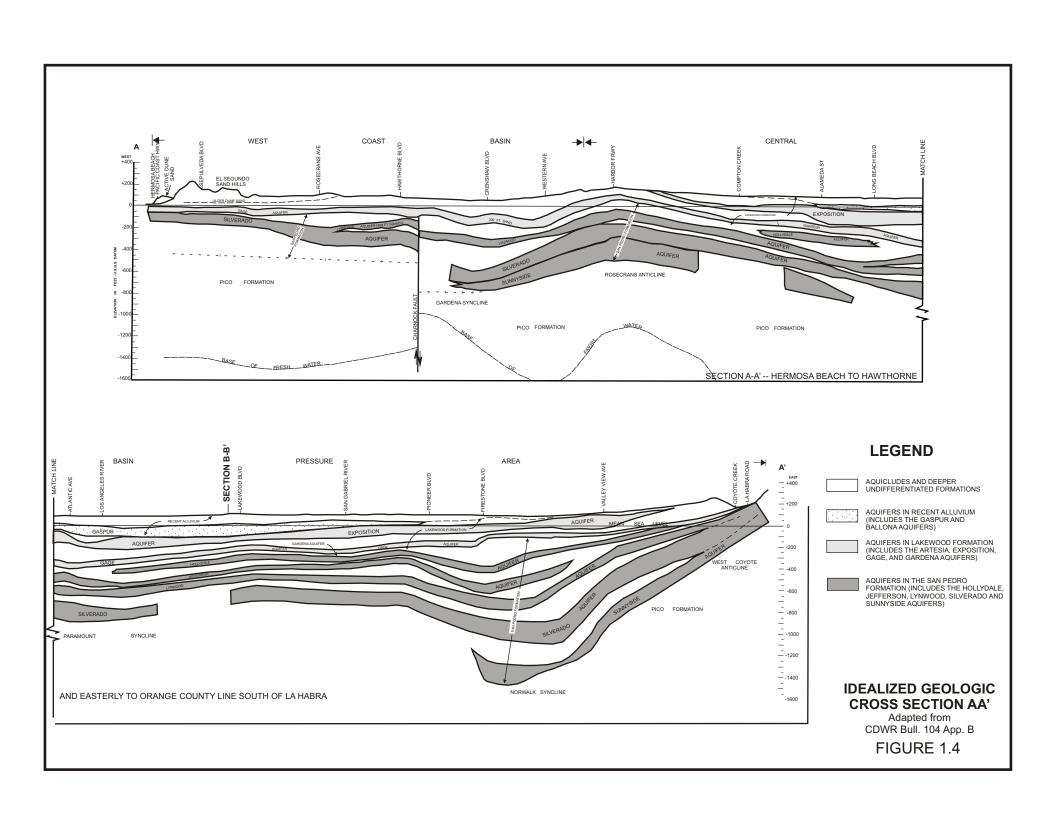
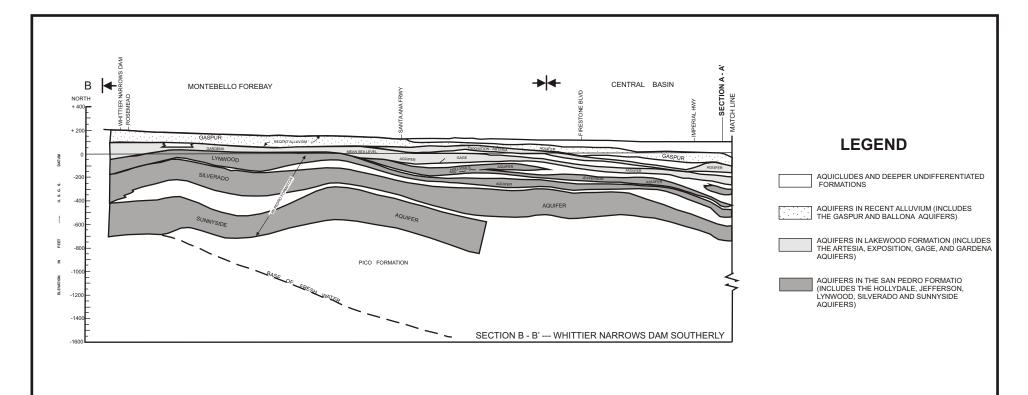


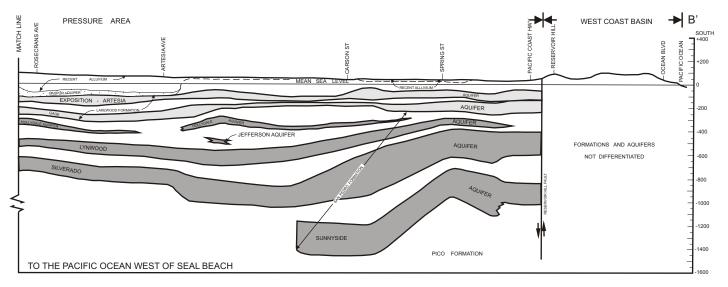
TABLE 3.4 MAJOR MINERAL WATER QUALITY GROUPS

	CDOID 4	CDOUBB	CROUPC	CDOUDD
NESTED	GROUP A ZONES	GROUP B ZONES	GROUP C ZONES	GROUP D ZONES
MONITORING	ZONES	ZONES	ZONES	ZONES
WELL LOCATIONS	Generally Calcium Bicarbonate or Calcium Bicarbonate/Sulfate	Generally Calcium-Sodium- Bicarbonate or Sodium-	Carramillo Cadione Chlorida	Comment Theor Comme
	Dominant Dominant	Bicarbonate Dominant	Generally Sodium-Chloride Dominant	Generally Different Than Groups A, B, and C
		CENTRAL BASIN		
Bell #1	2, 3, 4, 5, 6	1		
Bell Gardens #1	1, 2, 3, 4, 5, 6			
Cerritos #1 Cerritos #2	4, 5, 6 1, 2, 3, 4, 5, 6	1, 2, 3		
Cerritos #3	1, 2, 3, 4, 3, 0	1, 2, 4, 5, 6		3, 7
Commerce #1	3, 4, 5, 6	1, 2, 1, 3, 0	1	2
Compton #1	2, 3, 4, 5	1		
Compton #2	2, 3, 4, 5	1		6
Downey #1 Huntington Park #1	1, 2, 3, 4, 5, 6			
Inglewood #2	1, 2, 3, 4	1, 2, 3		
Lakewood #1	2, 3, 4, 5, 6	1		
Lakewood #2		1, 2, 3, 4, 5, 6, 7, 8		
La Mirada #1	4, 5	1, 2, 3		
Long Beach #1	4 4, 5, 6	1, 2, 3, 5		6
Long Beach #2 Long Beach #6	4, 5, 6	1, 2, 3 1, 2, 3, 4, 5		
Los Angeles #1	1, 2, 3, 4, 5	1, 2, 3, 1, 3		
Los Angeles #2	2, 3, 4			
Los Angeles #3	2, 3, 4, 5, 6	1		
Los Angeles #4	3, 4, 5, 6	1, 2	1.2	2.4.5.6
Los Angeles #5 Los Angeles #6		2	1, 2 1, 3	3, 4, 5, 6
Lynwood #1	3, 4, 5, 6, 7, 8, 9	1, 2	1, 3	4
Montebello #1	3, 4, 5	2		1
Montebello #2		1		2, 3, 4, 5
Norwalk #1	4, 5	1, 2, 3		
Norwalk #2 Paramount #1	3, 4, 5, 6	1, 2		1 2 2 4 5 6 7
Pico #1	2, 3, 4	1		1, 2, 3, 4, 5, 6, 7
Pico #2	1, 2, 3, 4, 5, 6	•		
Rio Hondo #1	1, 2, 3, 4, 5, 6			
Seal Beach #1	6	1, 2, 3, 4, 5		7
South Gate #1	1, 2, 3, 4, 5	1		
Willowbrook #1 Whittier #1	2, 3, 4 3, 4, 5	1	1, 2	
Whittier #2	1, 3, 4, 5, 6	2	1, 2	
Whittier Narrows #1	3, 4, 5, 6, 7, 8, 9	2	1	
		WEST COAST BASIN		
Carson #1	3, 4	1, 2		
Carson #2	1, 2, 3, 4, 5	1.2.2.		
Carson #3 Chandler #3	5, 6 2	1, 2, 3, 4		
Gardena #1	2, 3	1	4	
Gardena #2	2, 3, 4, 5	1		
Hawthorne #1	5, 6	1, 2, 3, 4		
Inglewood #1	3, 4, 5	10217		1
Inglewood #3 Lawndale #1	4, 5	1, 2, 3, 4, 5 1, 2, 3	6, 7	6
Lawridate #1 Lomita #1	2, 3, 4, 5	1, 4, 3		1
Long Beach #3	-, -, -, -	1, 2, 3	4, 5	•
Long Beach #8		1, 2, 3	6	4, 5
Manhattan Beach #1		3	5,6	7
PM-2 Police Station	2.4	1.2	1,2,4	3
PM-3 Madrid PM-4 Mariner	3, 4 4	1, 2 1	2	3
PM-5 Columbia Park	6	1, 2, 3, 4	5	
PM-6 Madrona Marsh Westchester #1	6	2, 4 1, 2, 3, 4, 5	3, 5	1
Wilmington #1 Wilmington #2		1	1, 2, 3, 4, 5 2, 3, 4, 5	

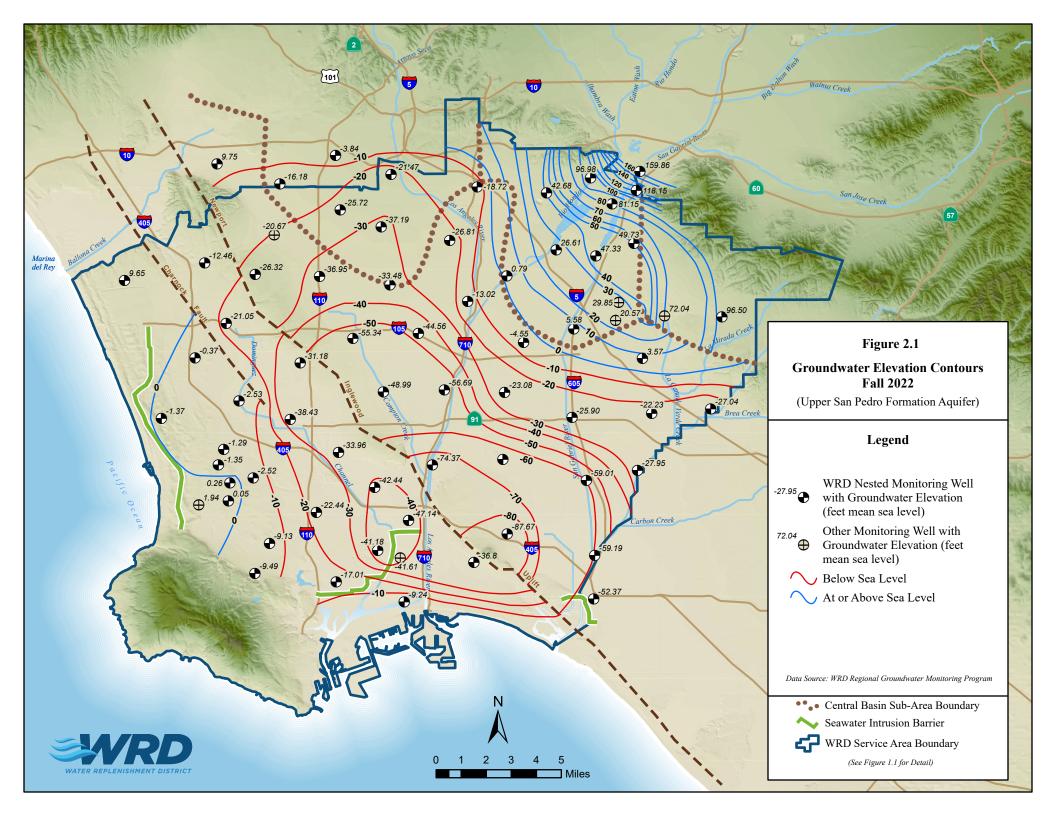
Note - Values shown above represent the various zones at each nested well location classified by major mineral water quality group.

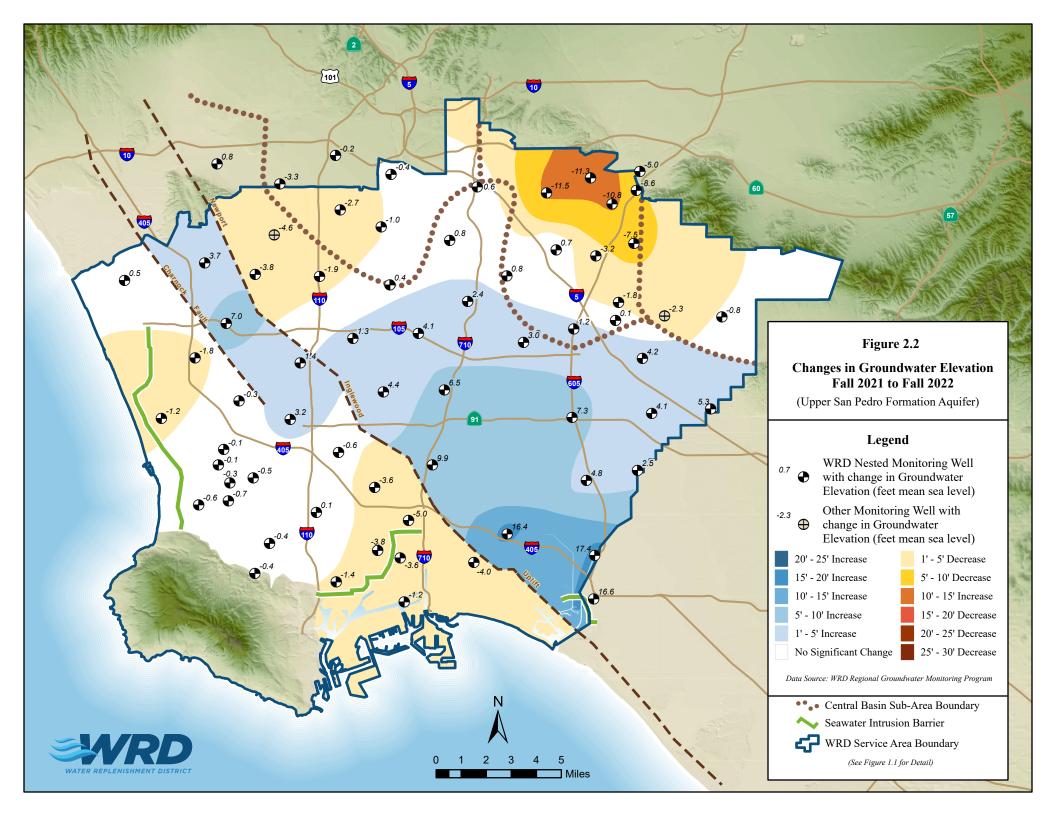




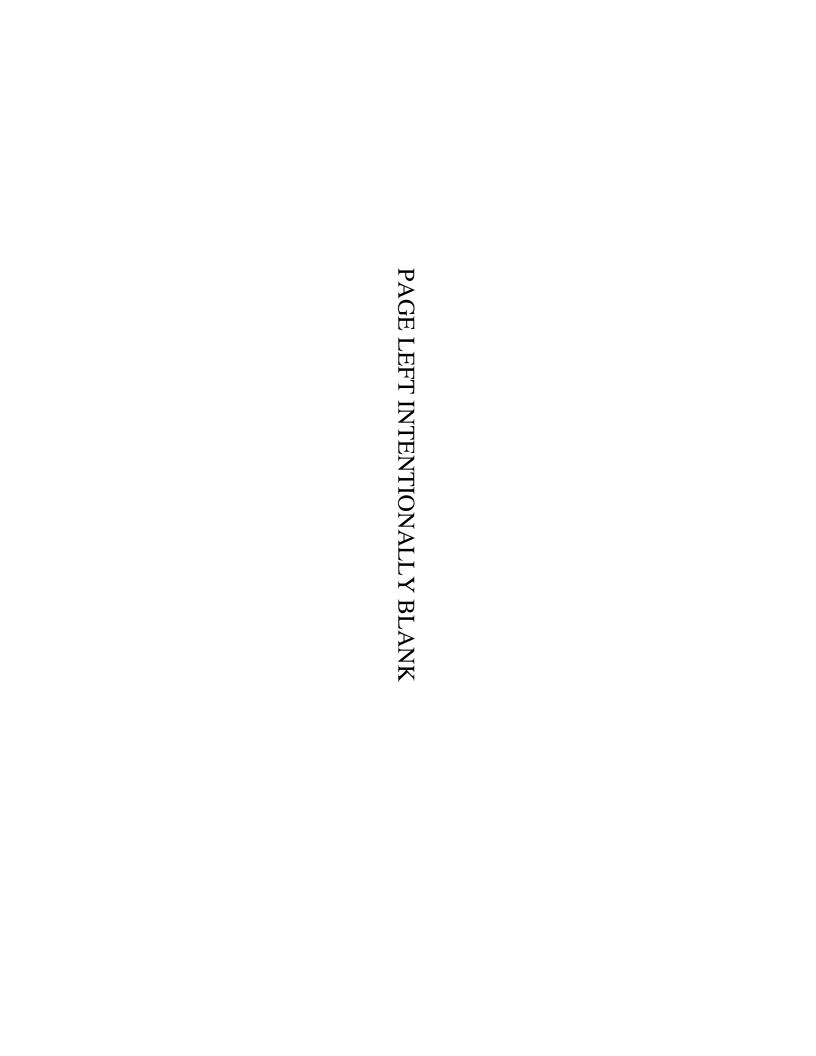

FIGURE 1.2 NESTED WELLS vs. PRODUCTION WELLS FOR AQUIFER-SPECIFIC DATA



Production wells are typically perforated across multiple aquifers producing an average water quality. Nested monitoring wells are screened in a portion of a specific aquifer, providing water quality and water level information for the specific zone.






IDEALIZED GEOLOGIC CROSS SECTION BB'

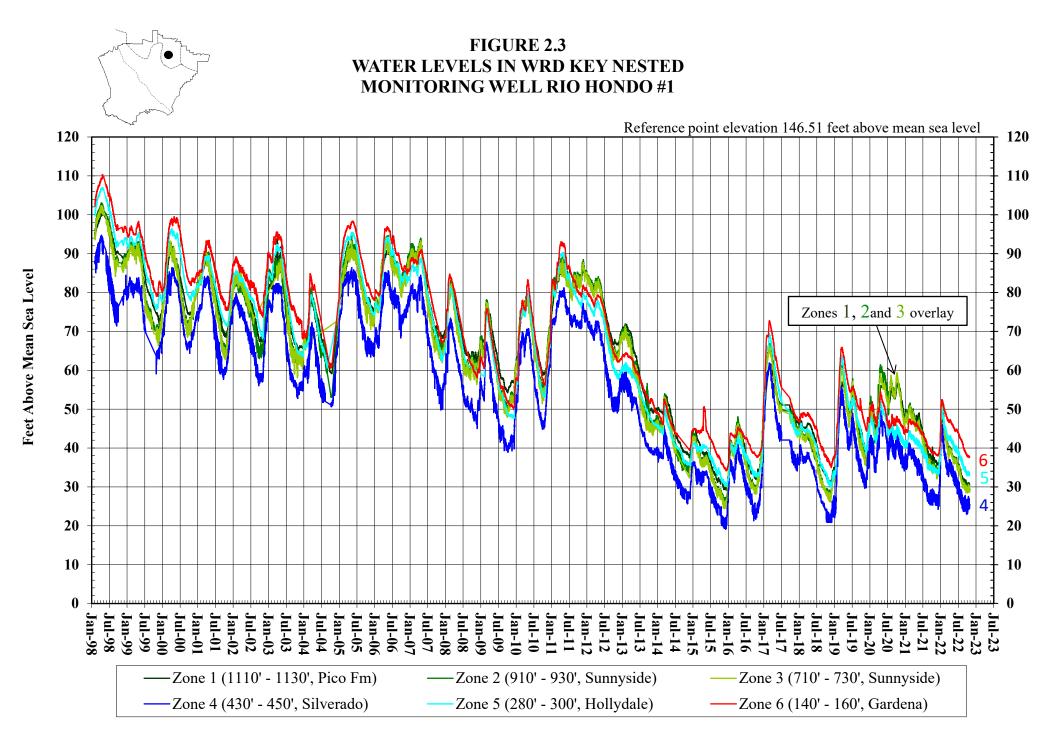
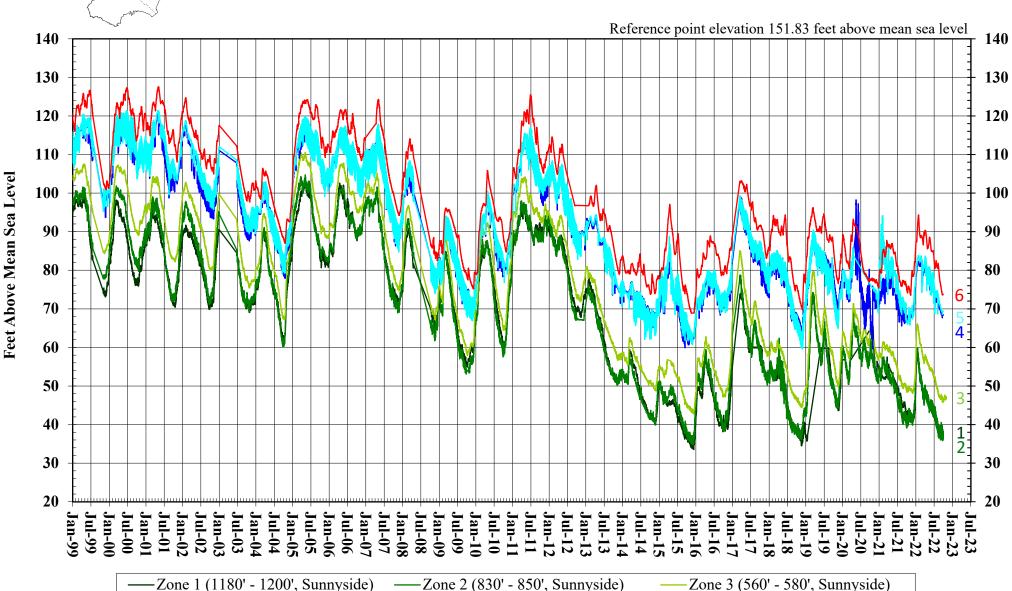

Adapted from CDWR Bull. 104 App. B

FIGURE 1.5



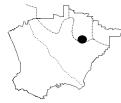
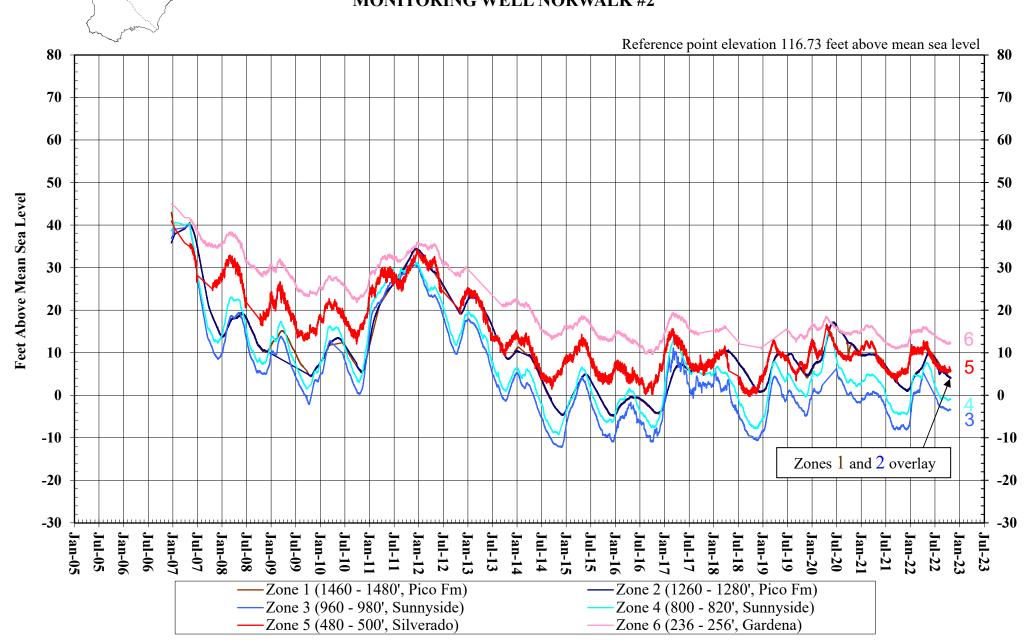

-Zone 4 (320' - 340', Silverado)

FIGURE 2.4 WATER LEVELS IN WRD KEY NESTED MONITORING WELL PICO #2




Zone 5 (235' - 255', Lynwood)

-Zone 6 (100' - 120', Gaspur/Gage)

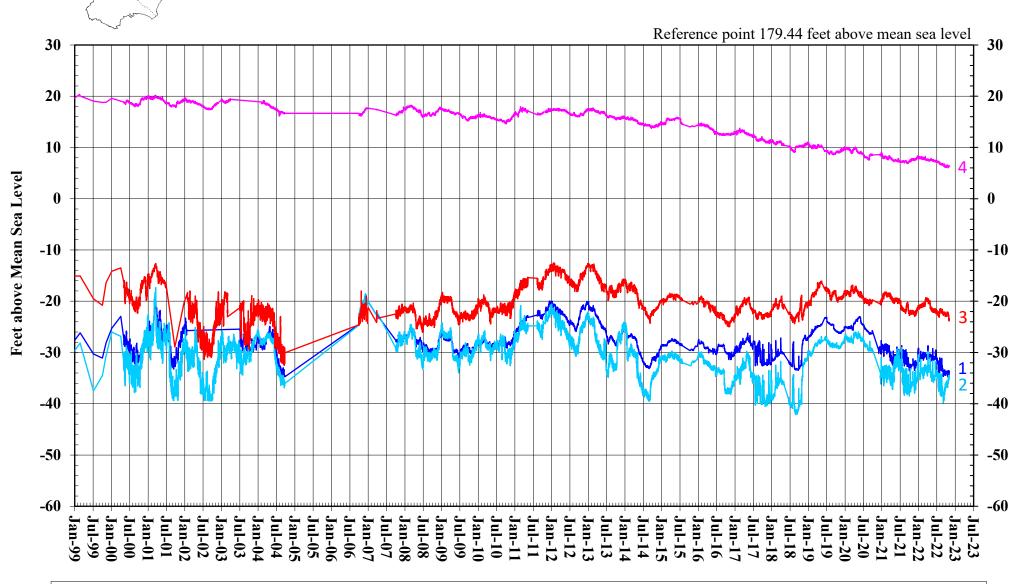
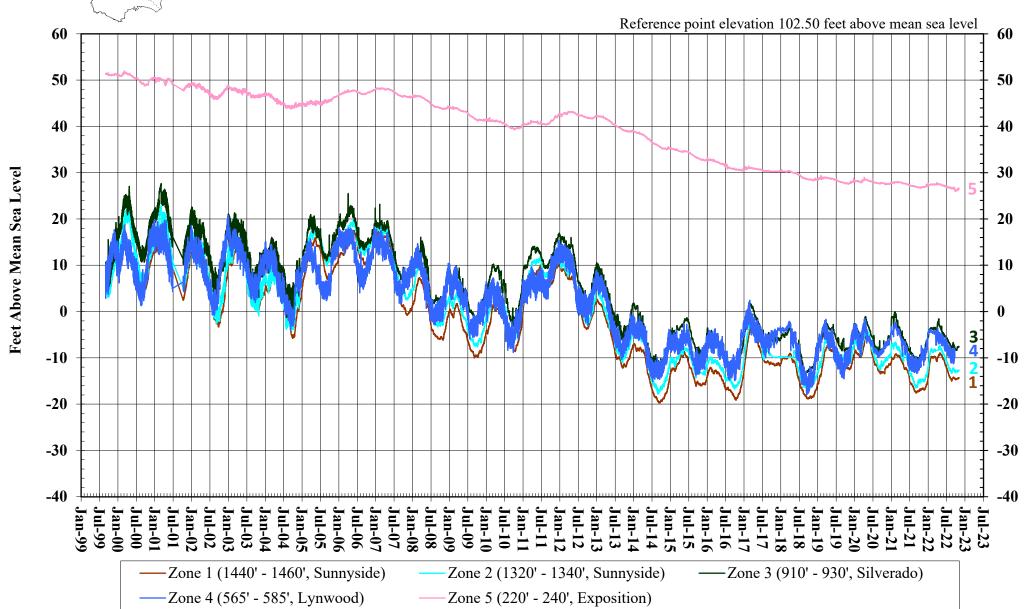
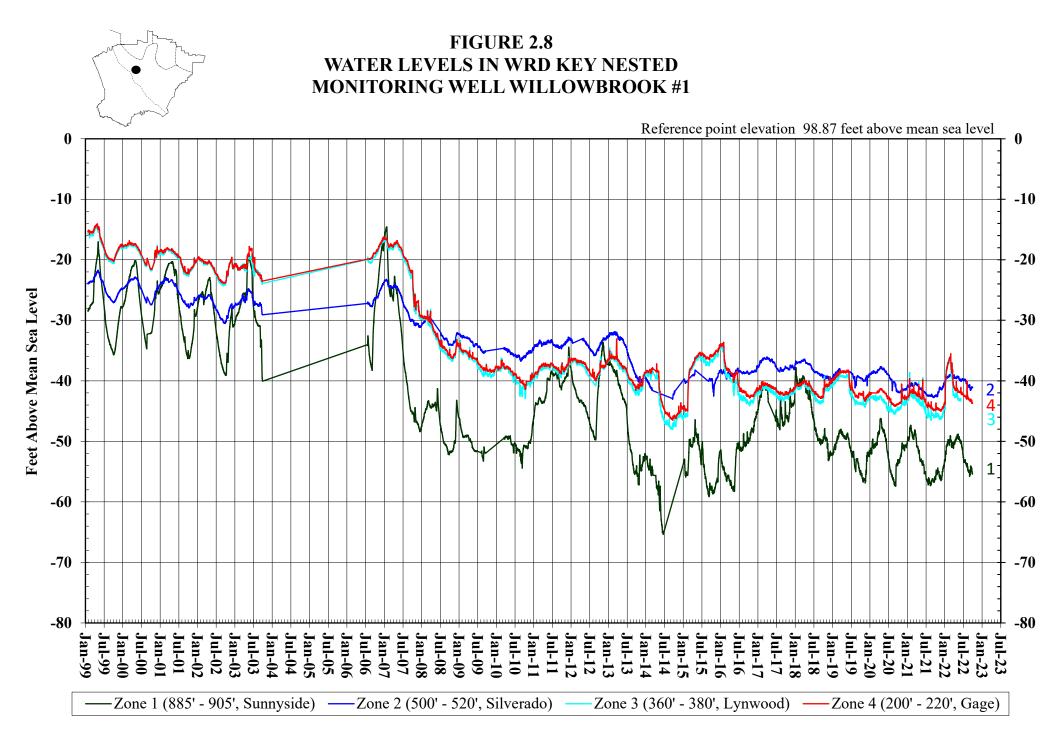


FIGURE 2.5 WATER LEVELS IN WRD KEY NESTED MONITORING WELL NORWALK #2


FIGURE 2.6 WATER LEVELS IN WRD KEY NESTED MONITORING WELL HUNTINGTON PARK #1



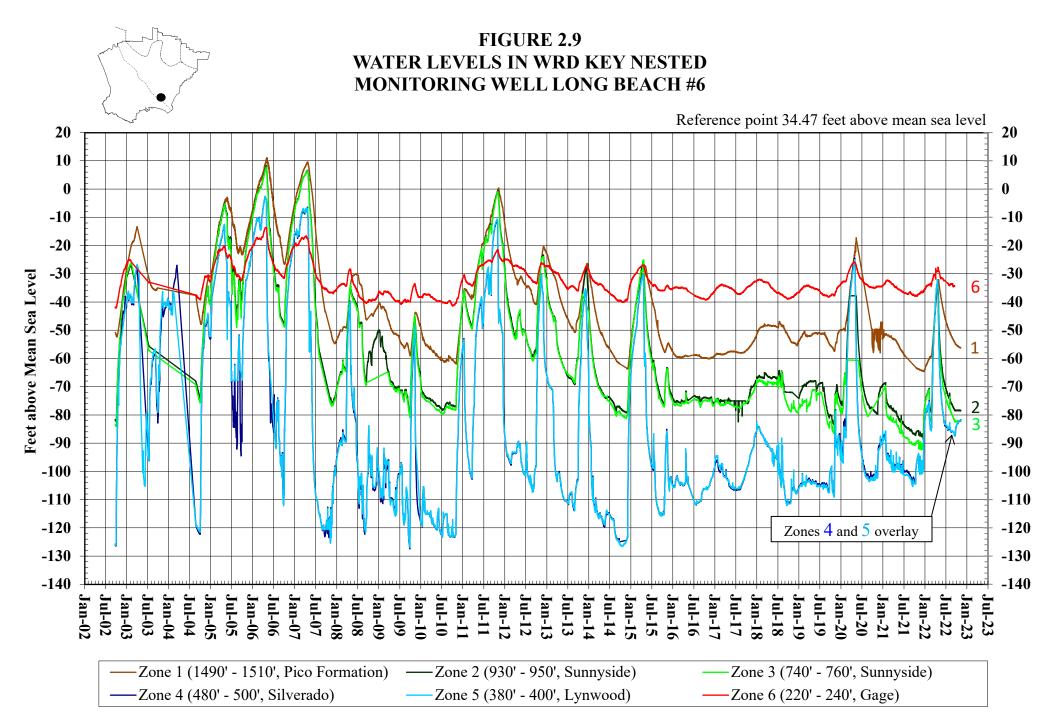
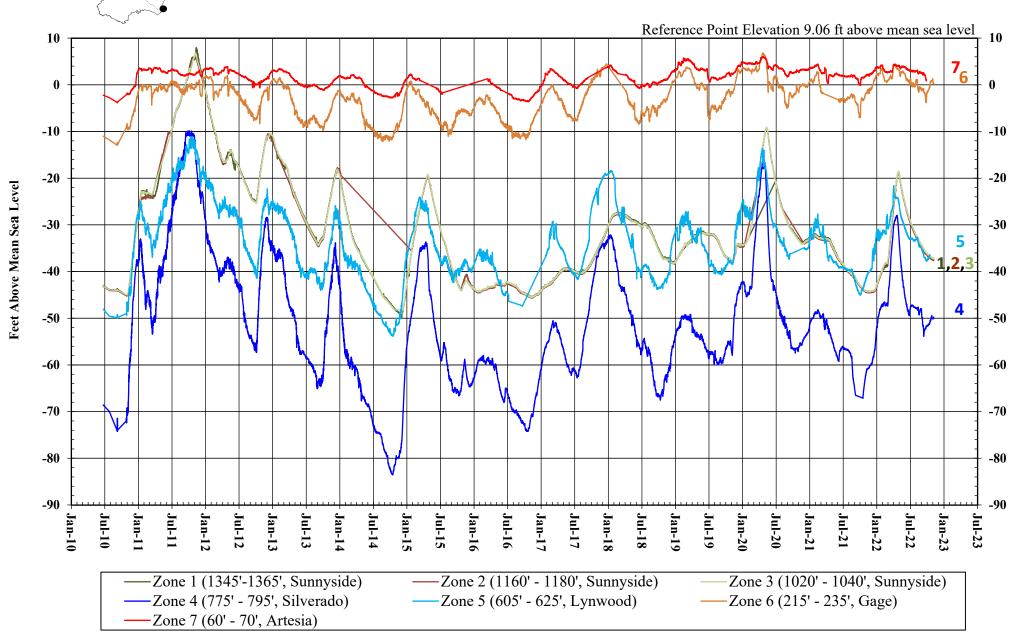

—Zone 1 (890' - 910', Silverado) —Zone 2 (690' - 710', Lynwood) —Zone 3 (420' - 440', Hollydale) —Zone 4 (275' - 295', Gage)

FIGURE 2.7 WATER LEVELS IN WRD KEY NESTED MONITORING WELL SOUTH GATE #1



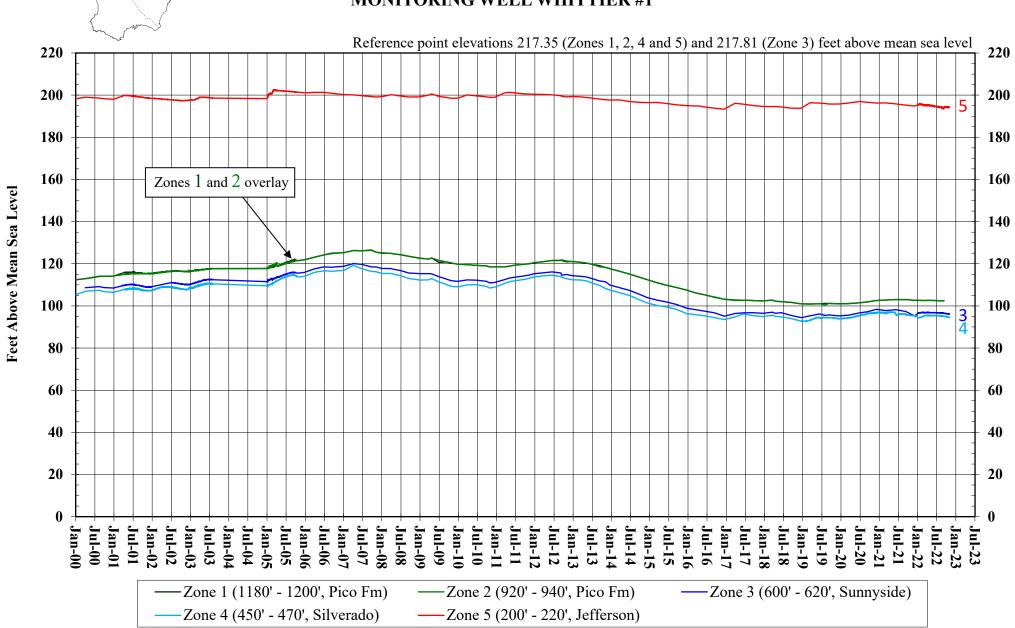
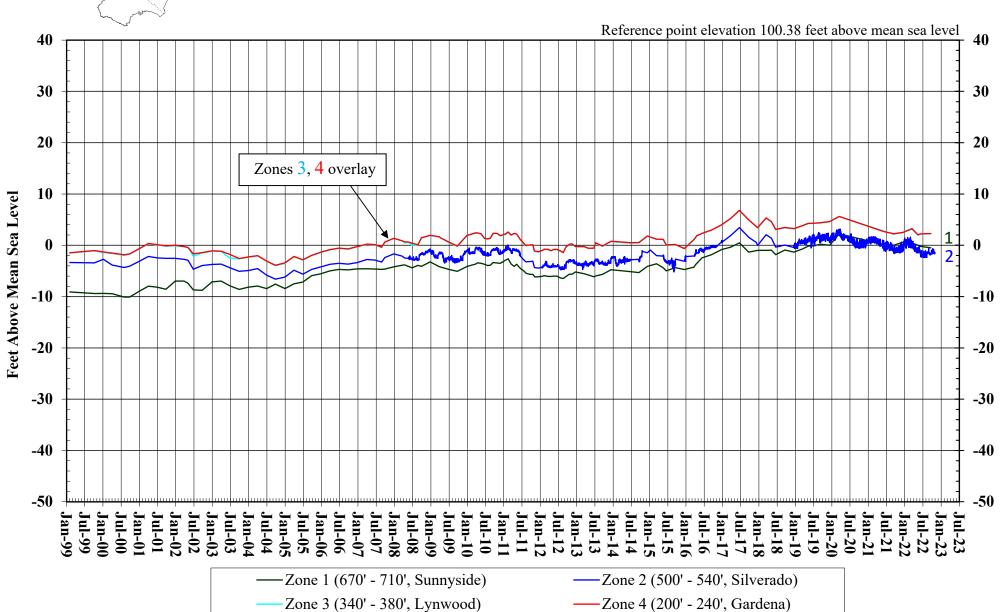
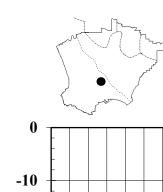
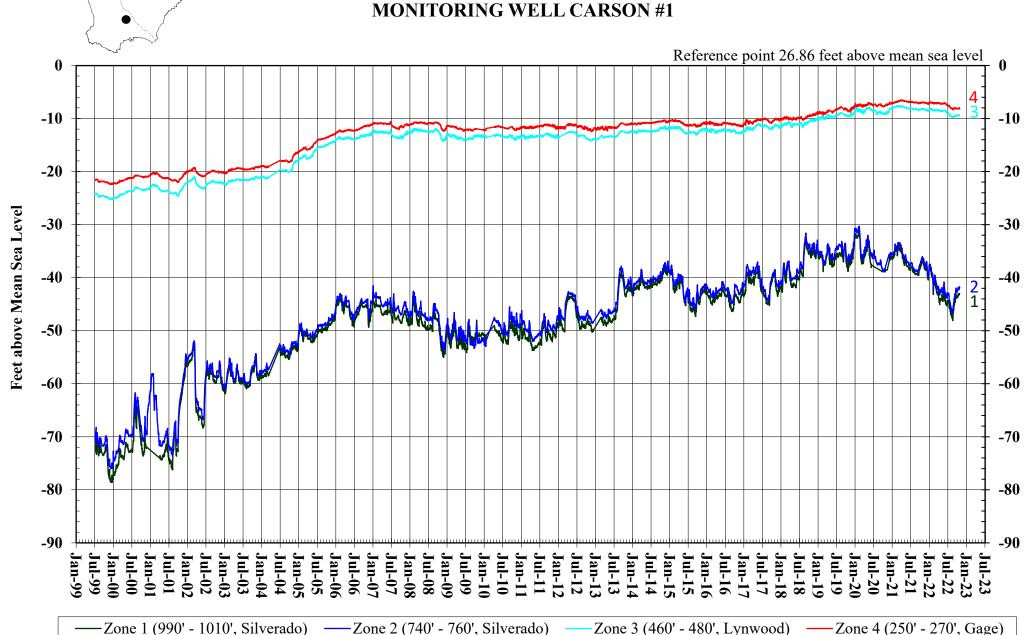
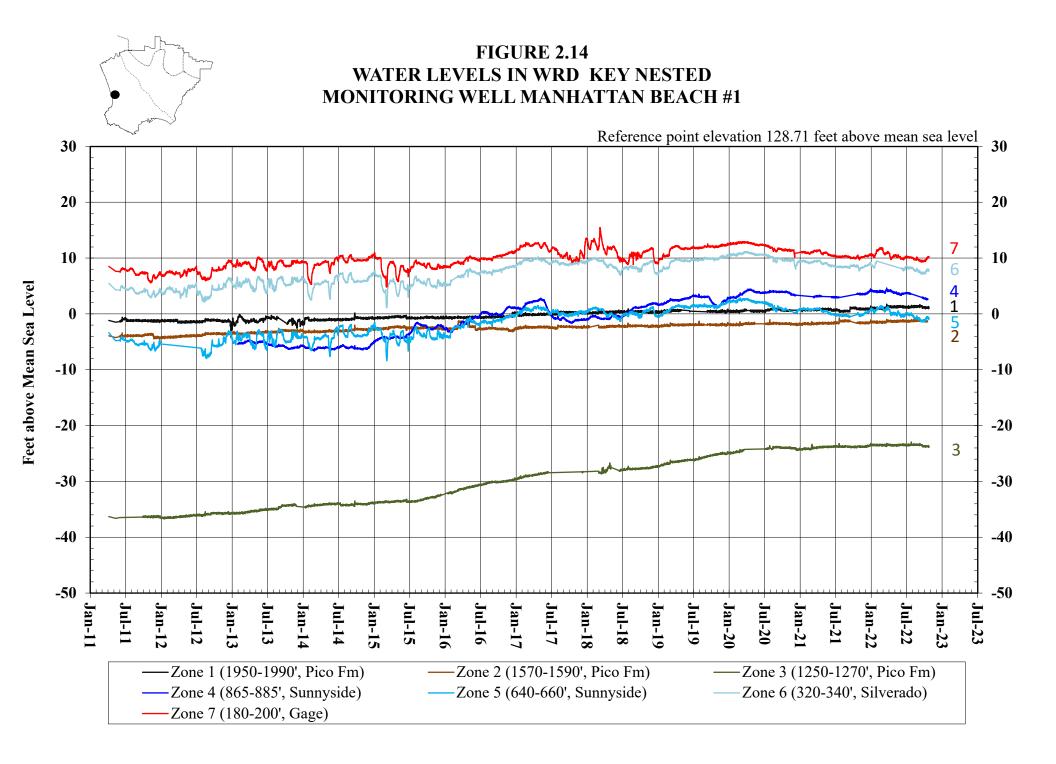


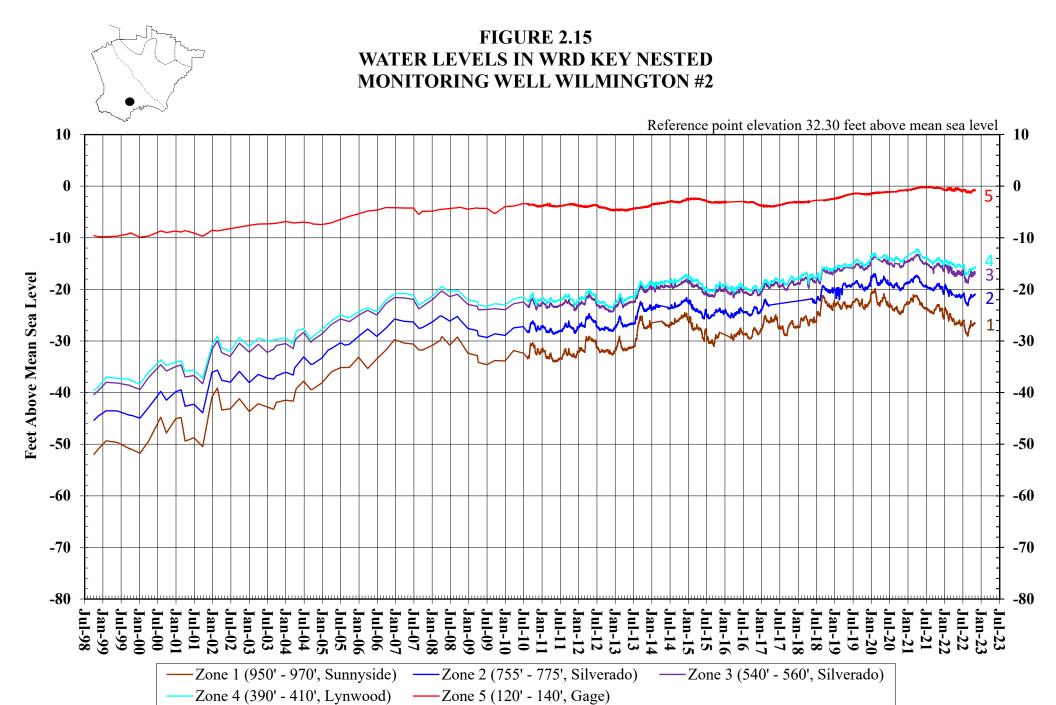
FIGURE 2.10 WATER LEVELS IN WRD KEY NESTED MONITORING WELL SEAL BEACH #1

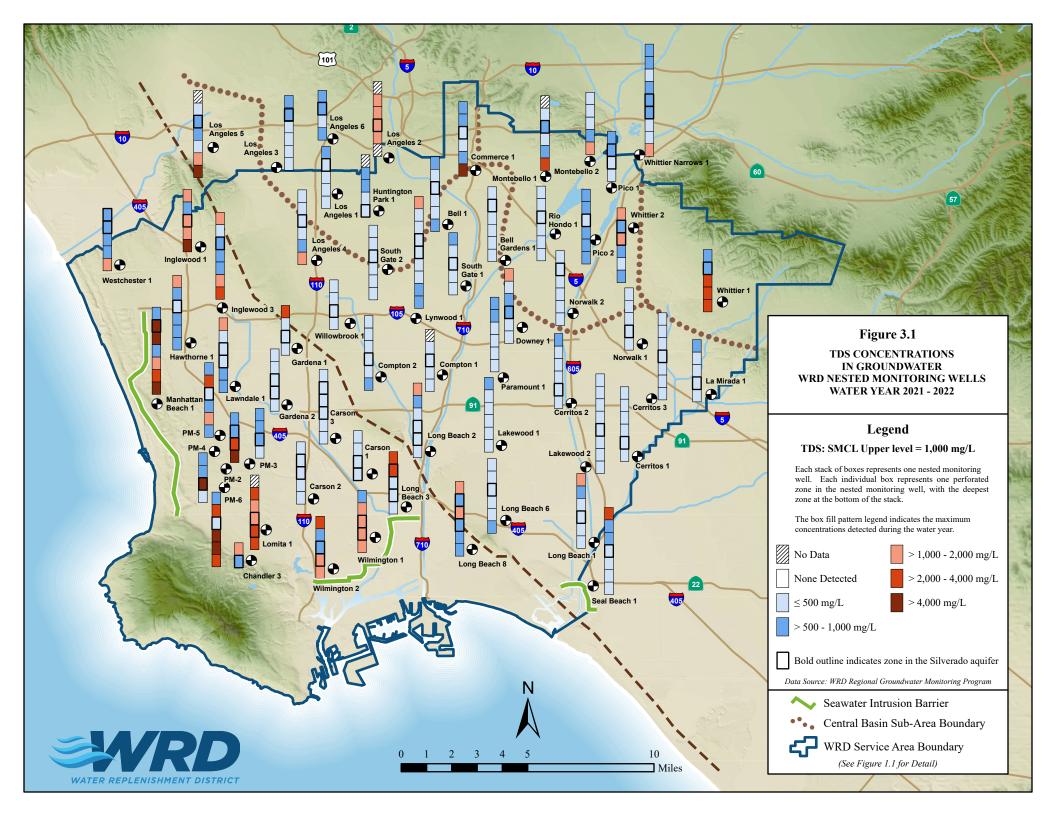


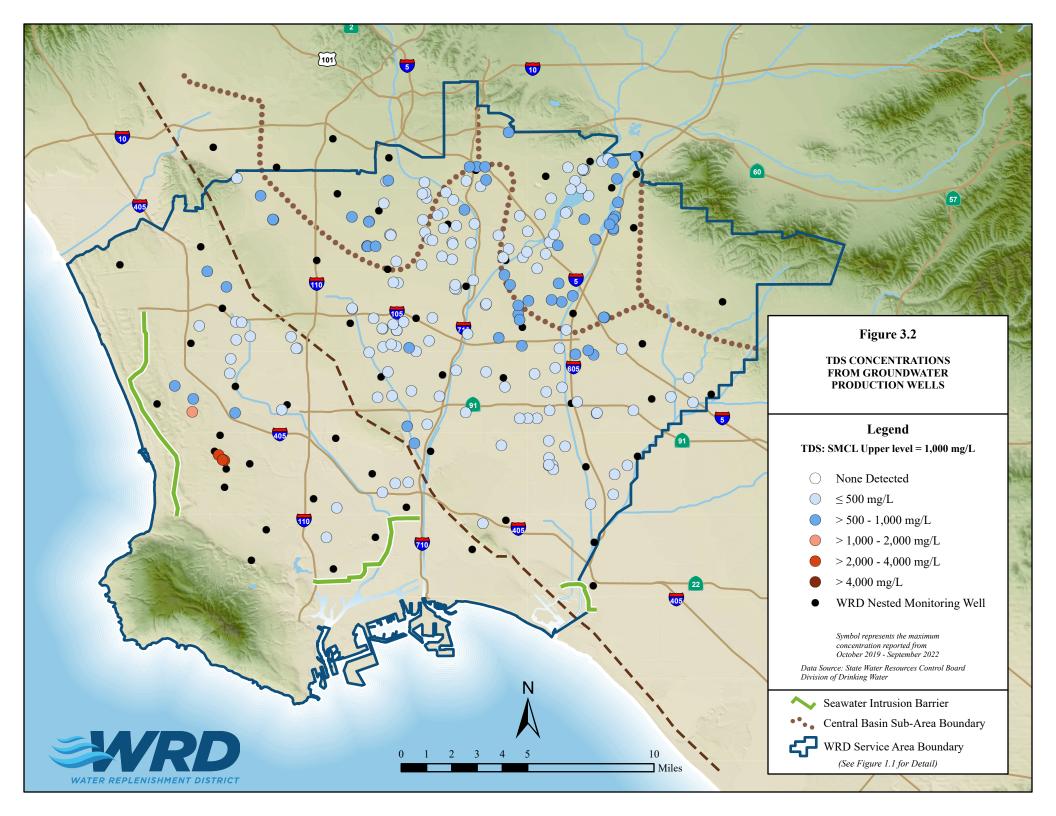

FIGURE 2.11 WATER LEVELS IN WRD KEY NESTED MONITORING WELL WHITTIER #1

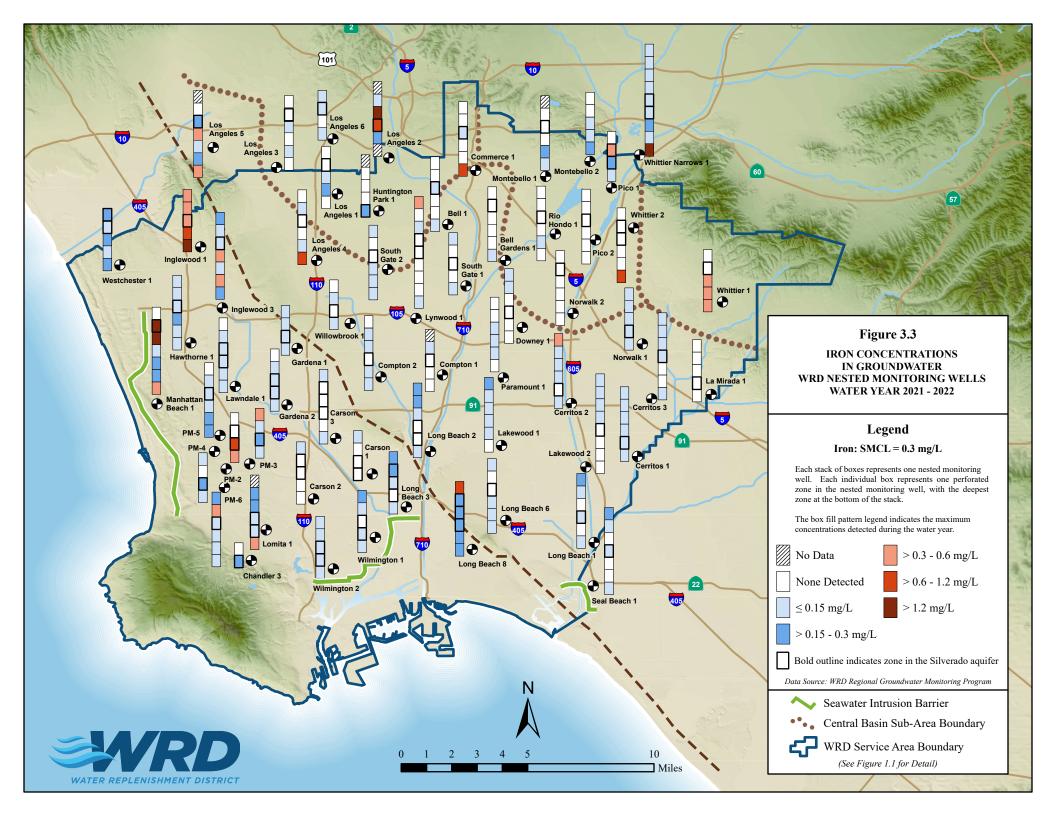


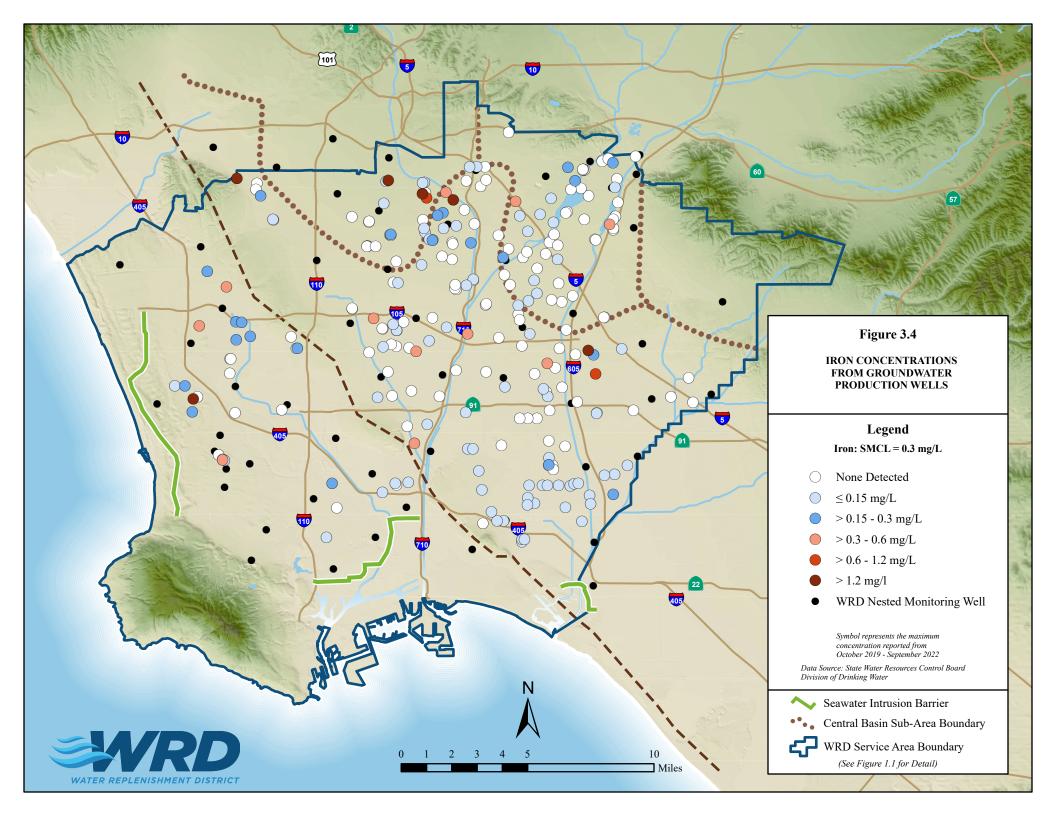

FIGURE 2.12 WATER LEVELS IN WRD KEY NESTED MONITORING WELL PM-4 MARINER

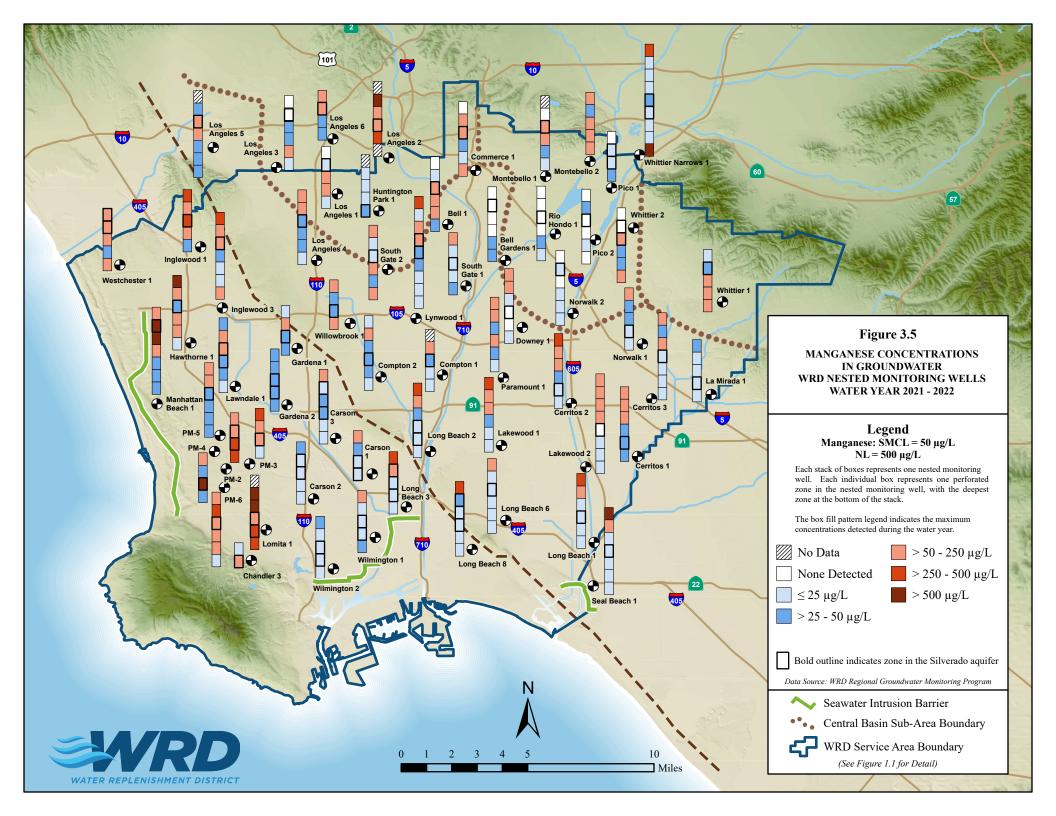


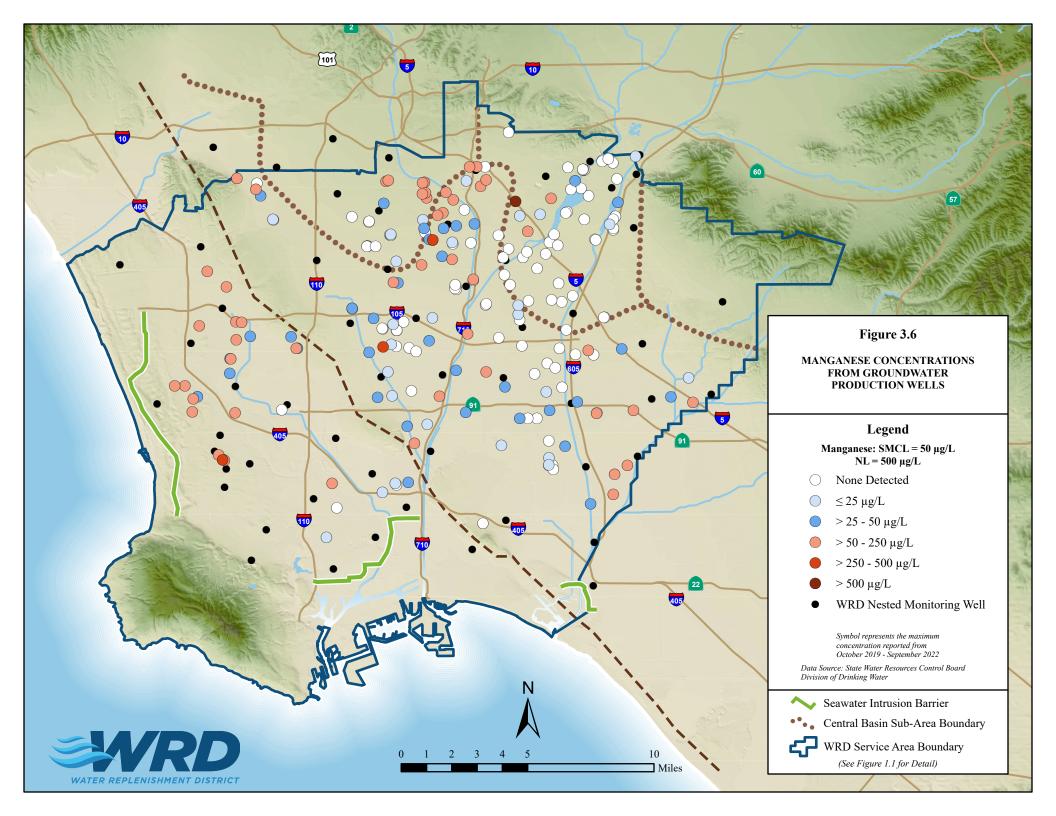


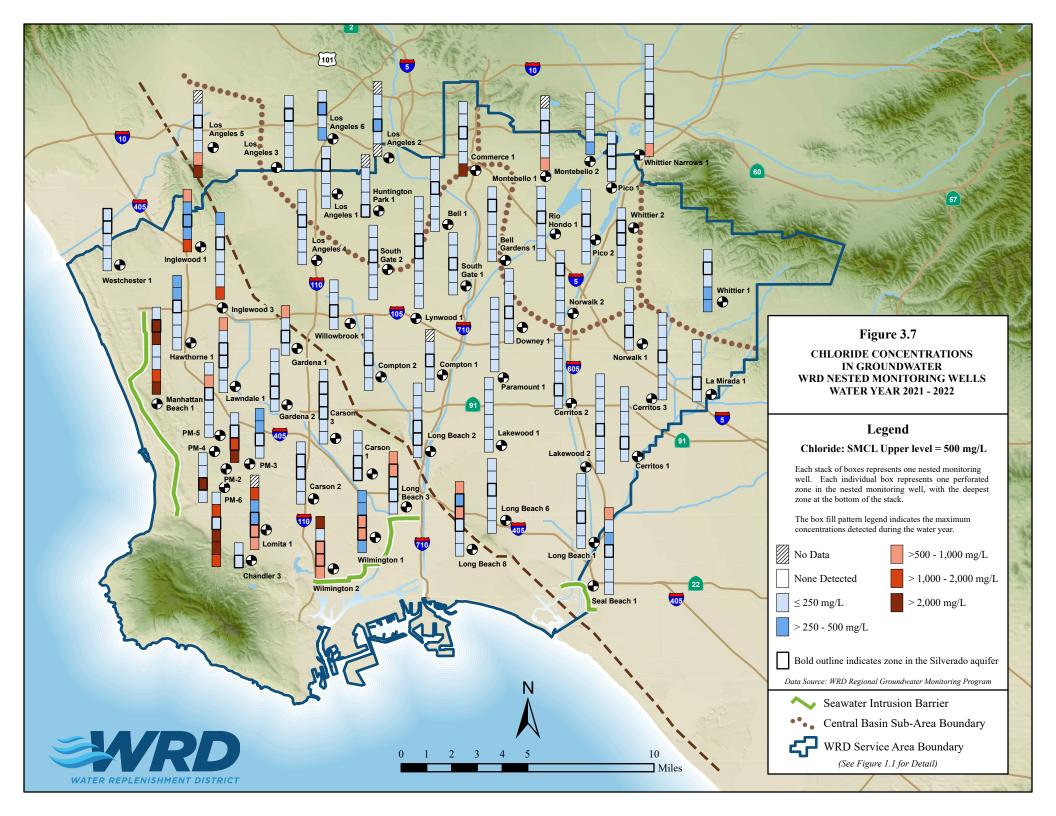

FIGURE 2.13 WATER LEVELS IN WRD KEY NESTED

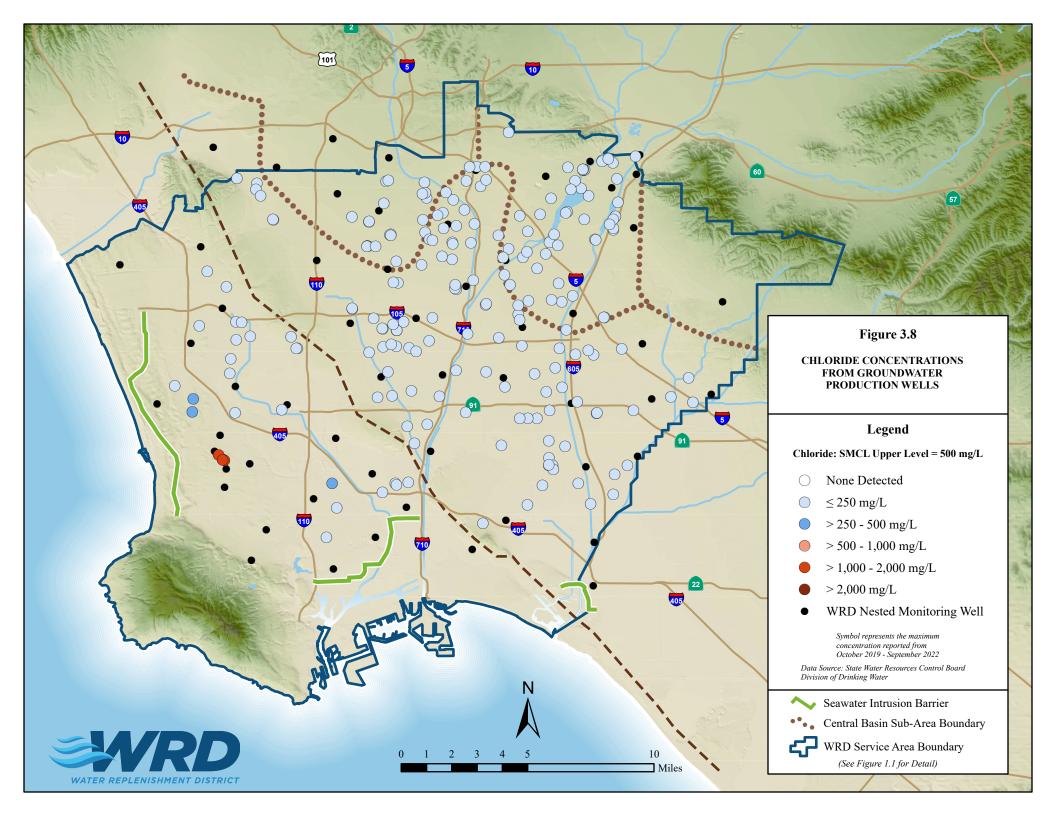


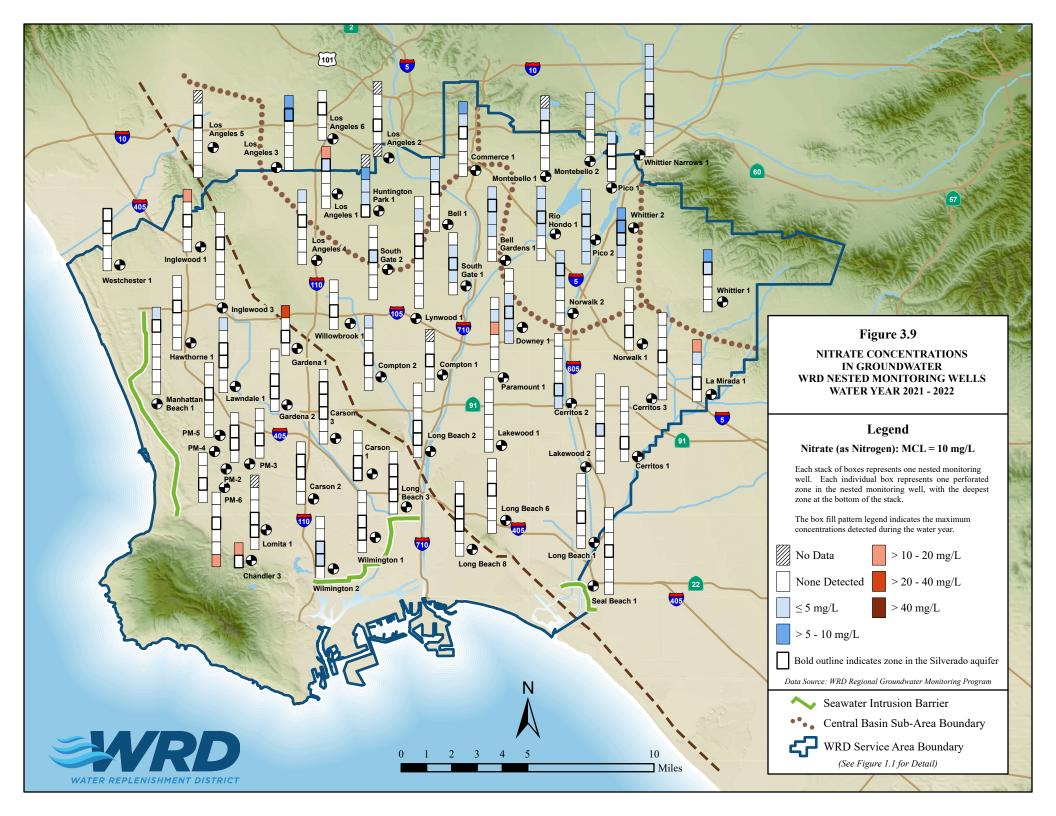


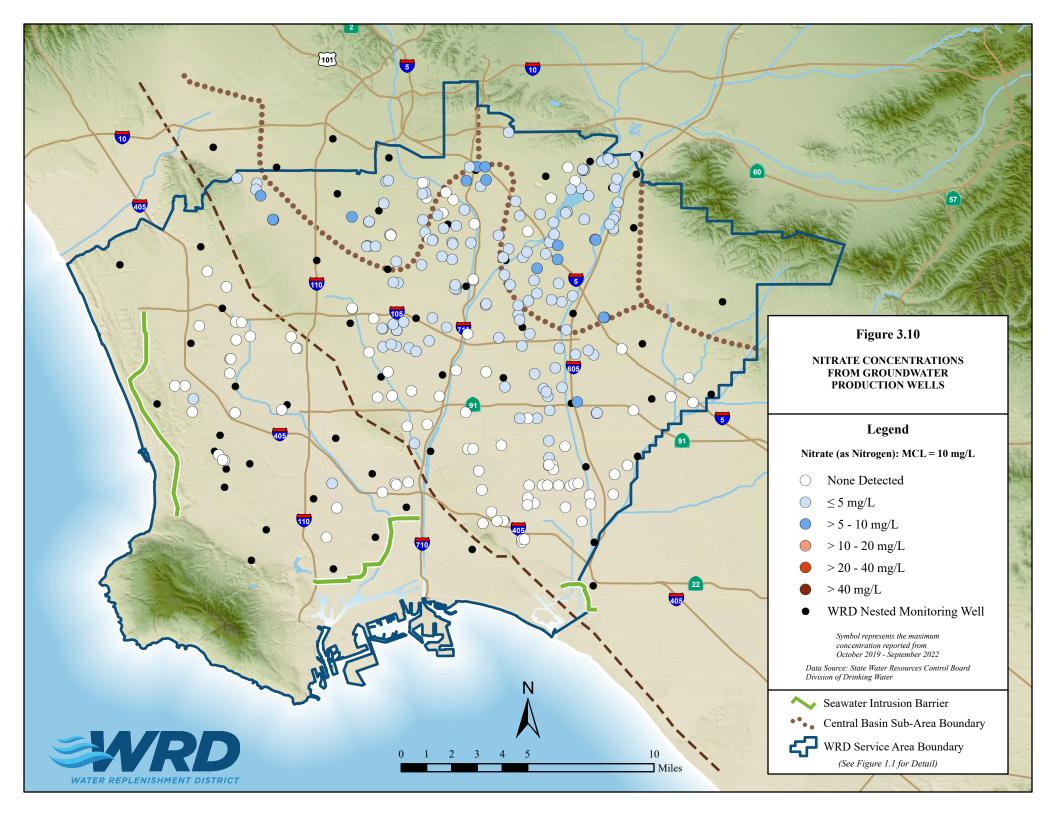


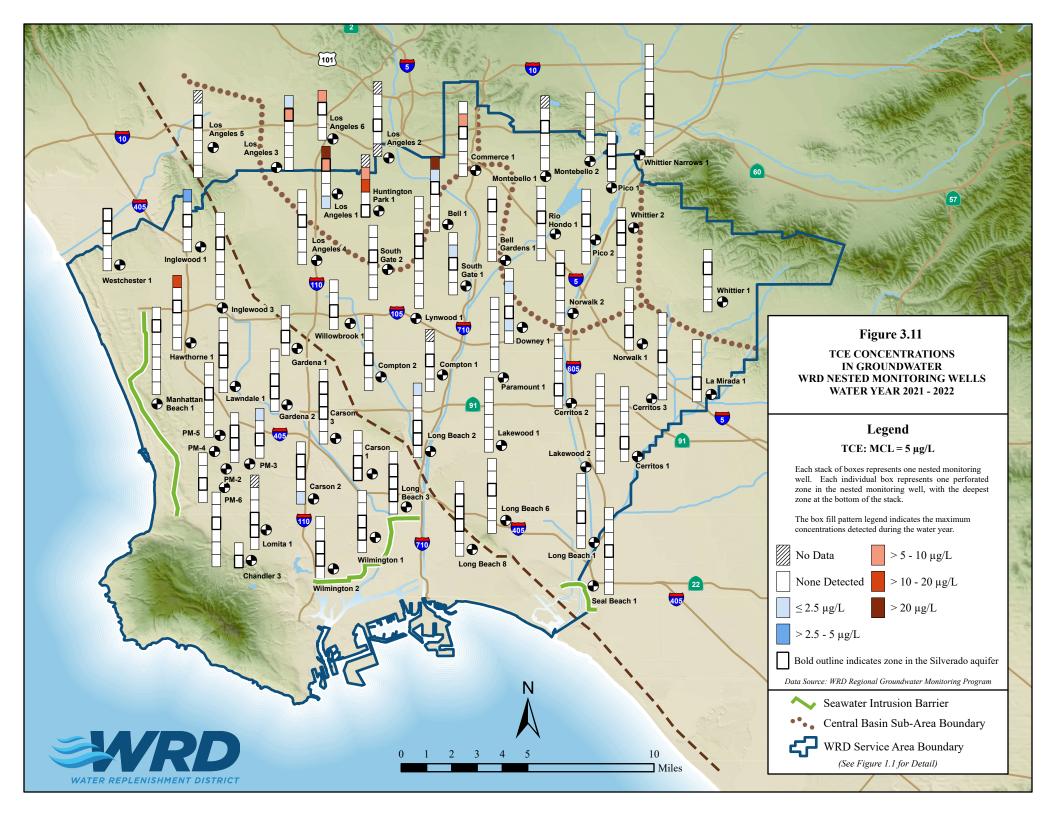


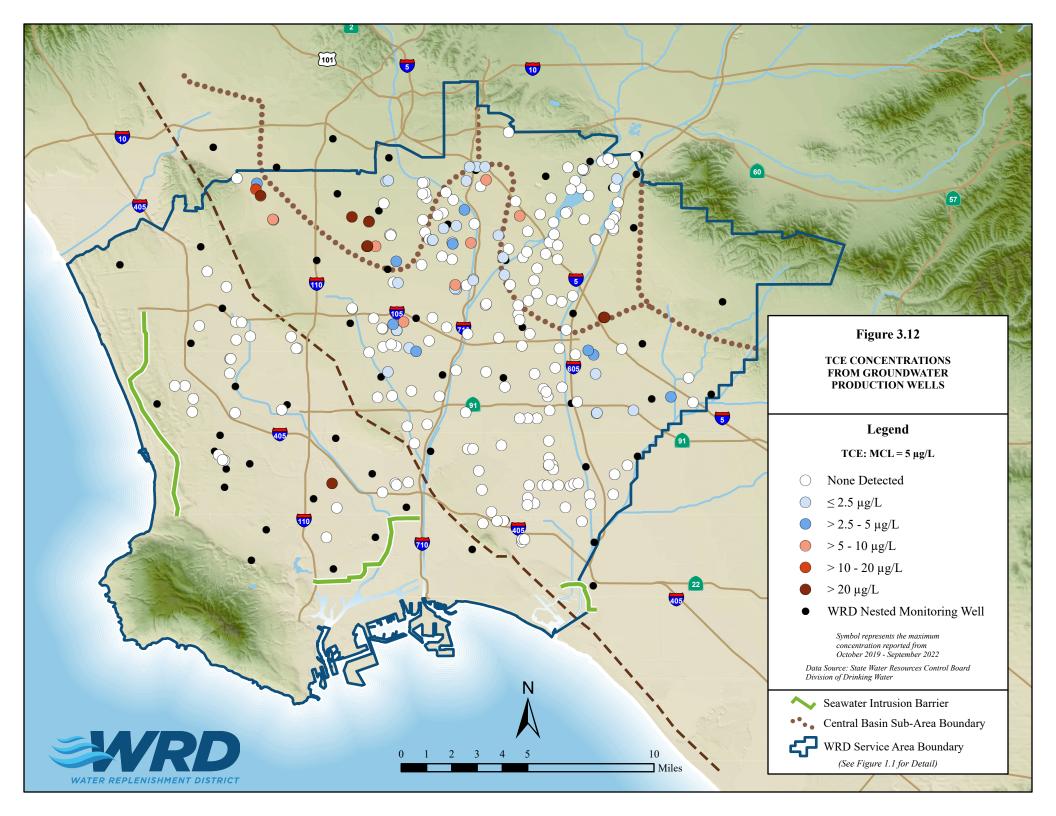


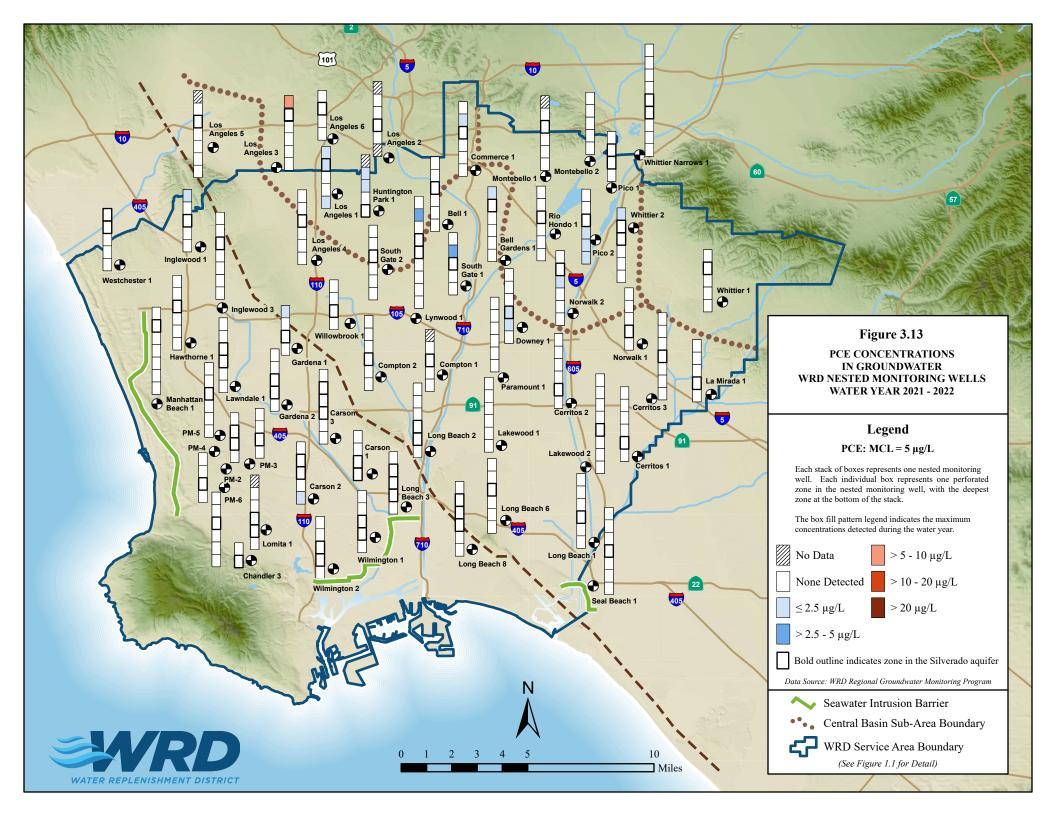


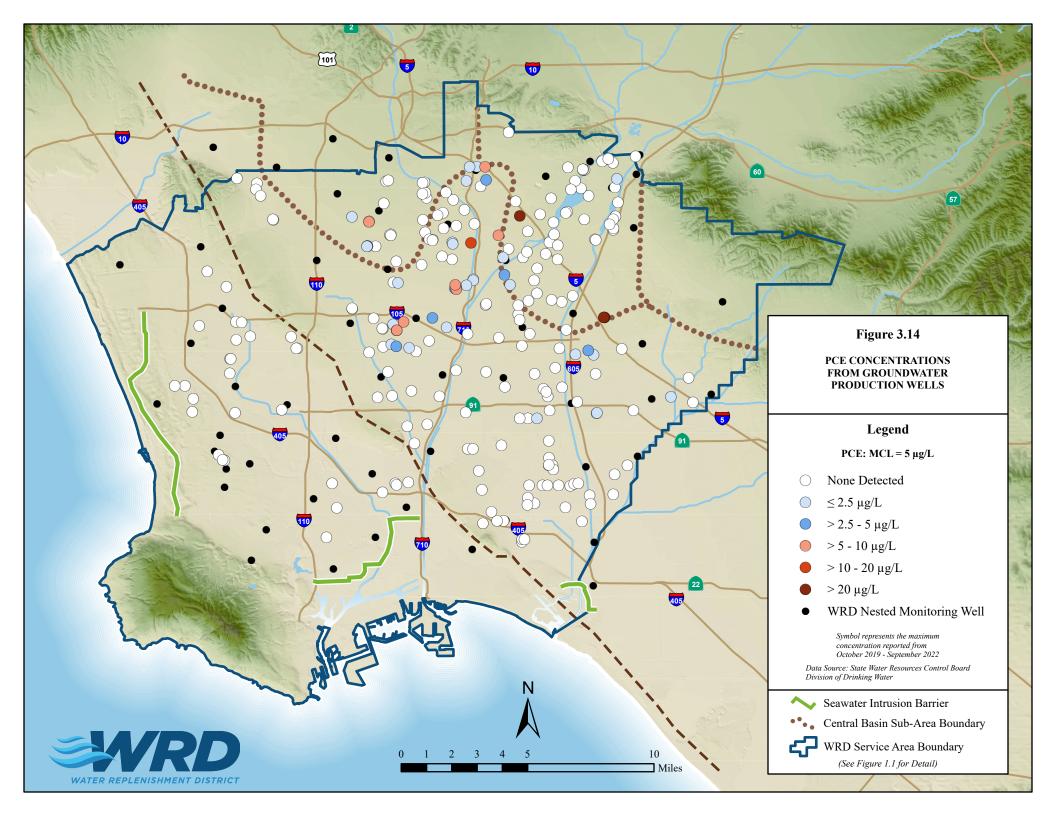


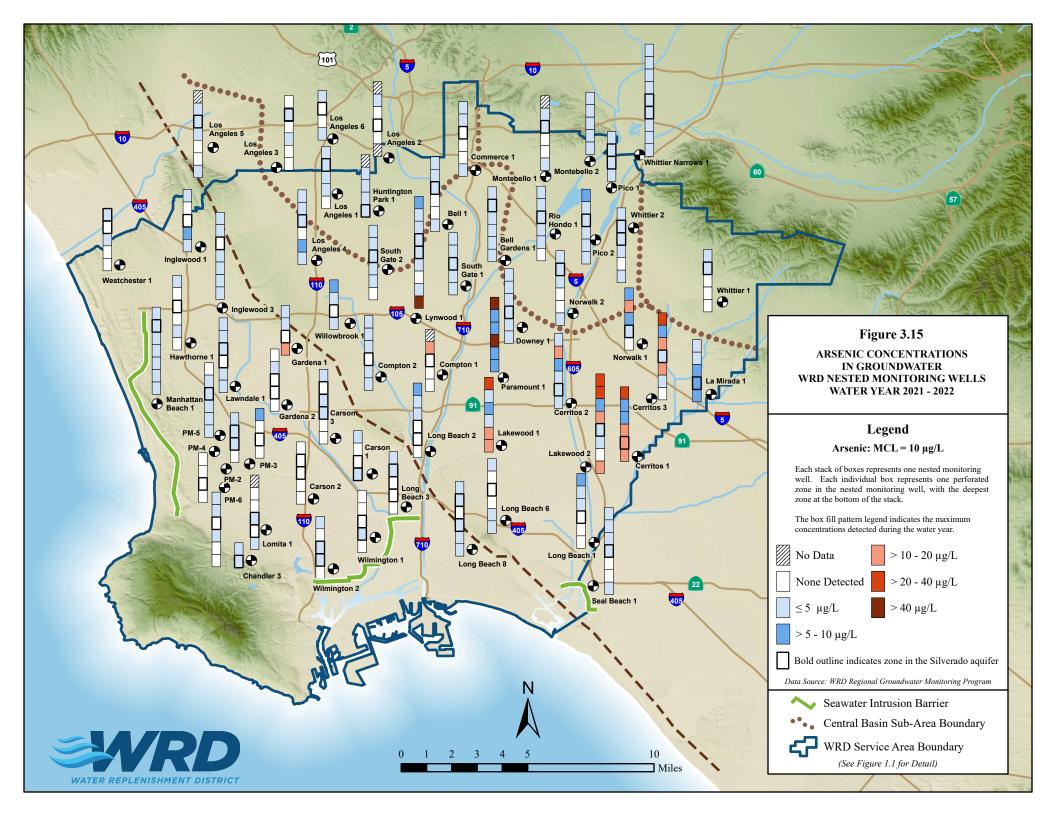


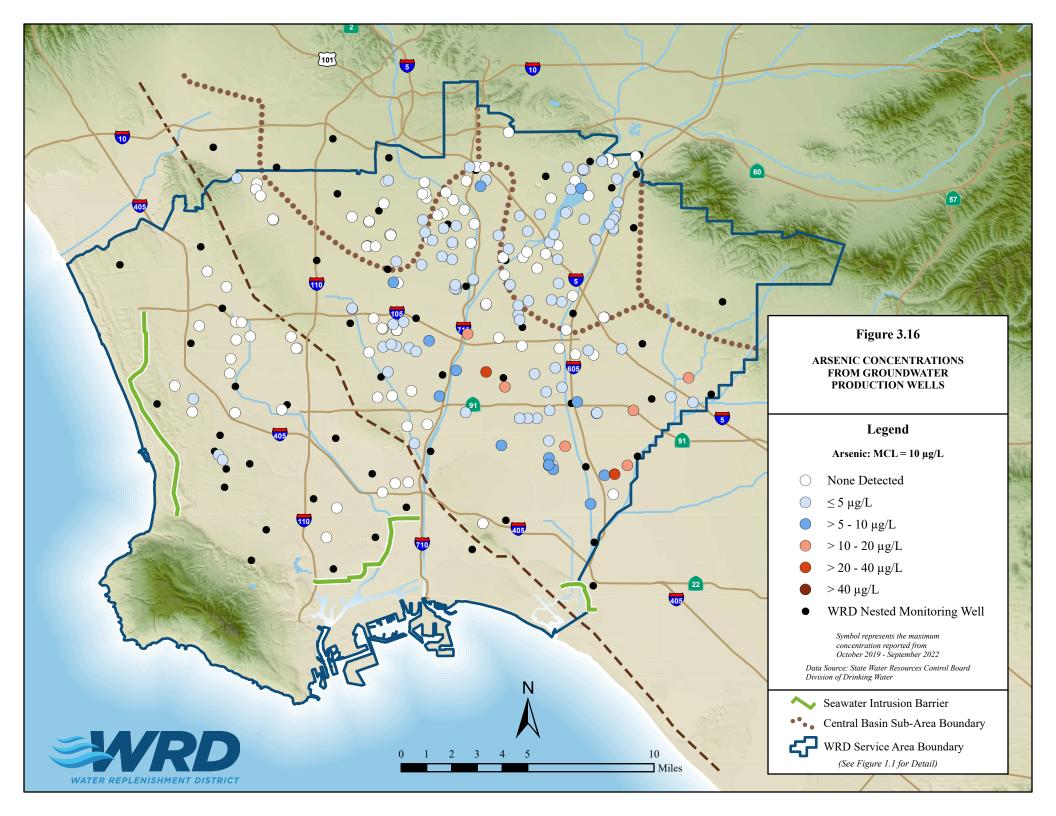


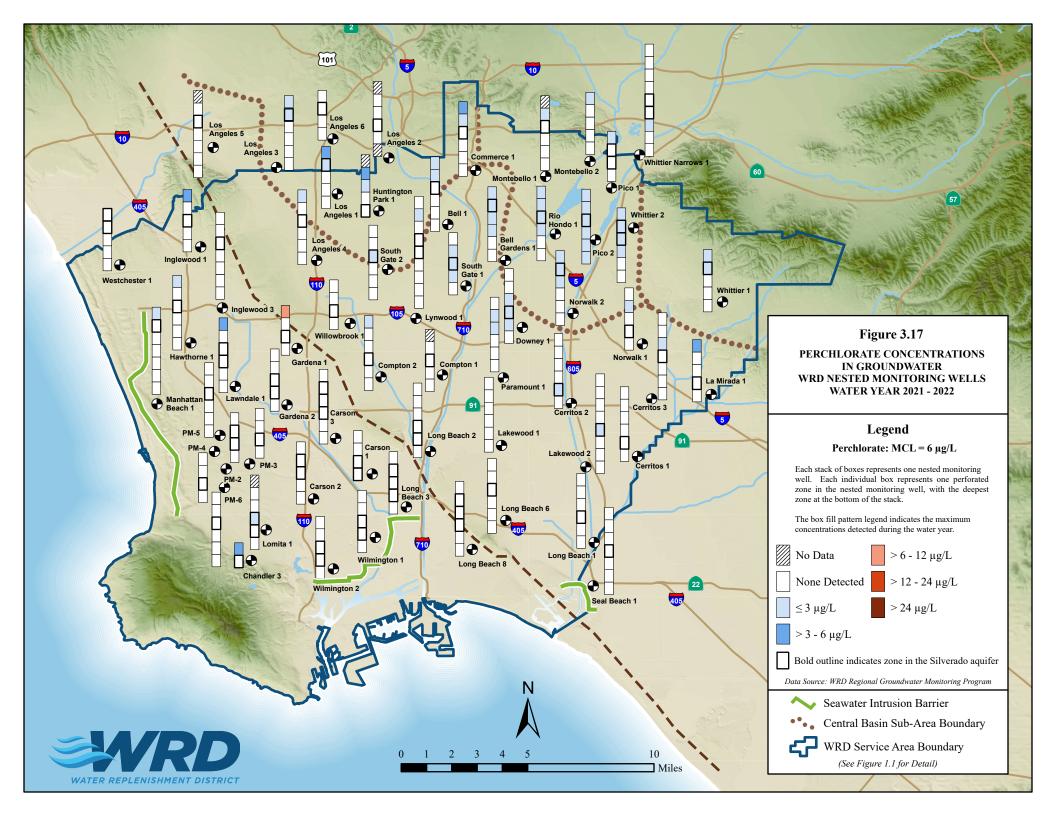


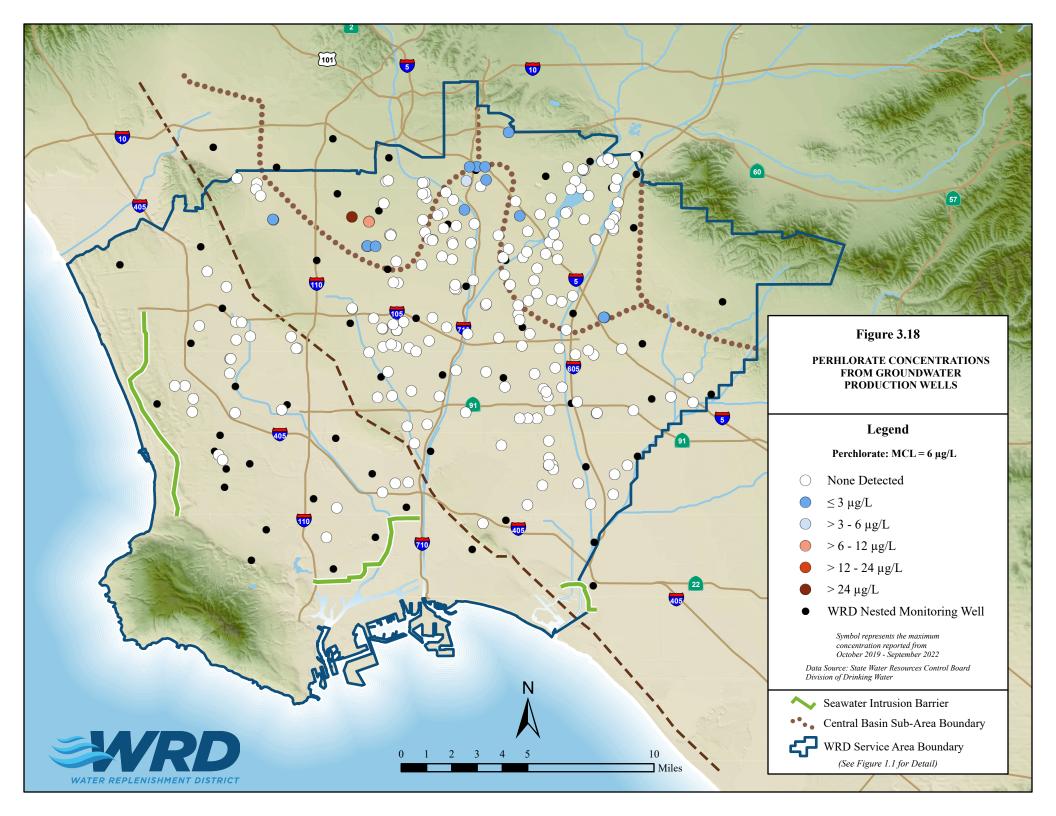


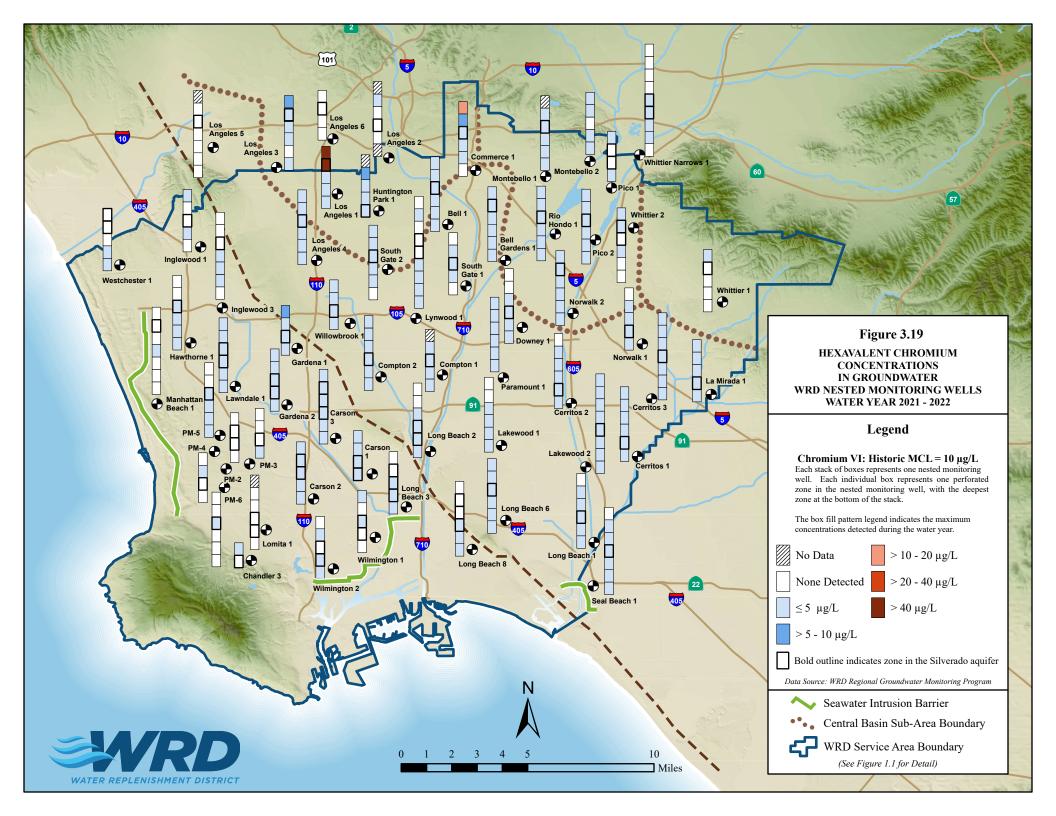


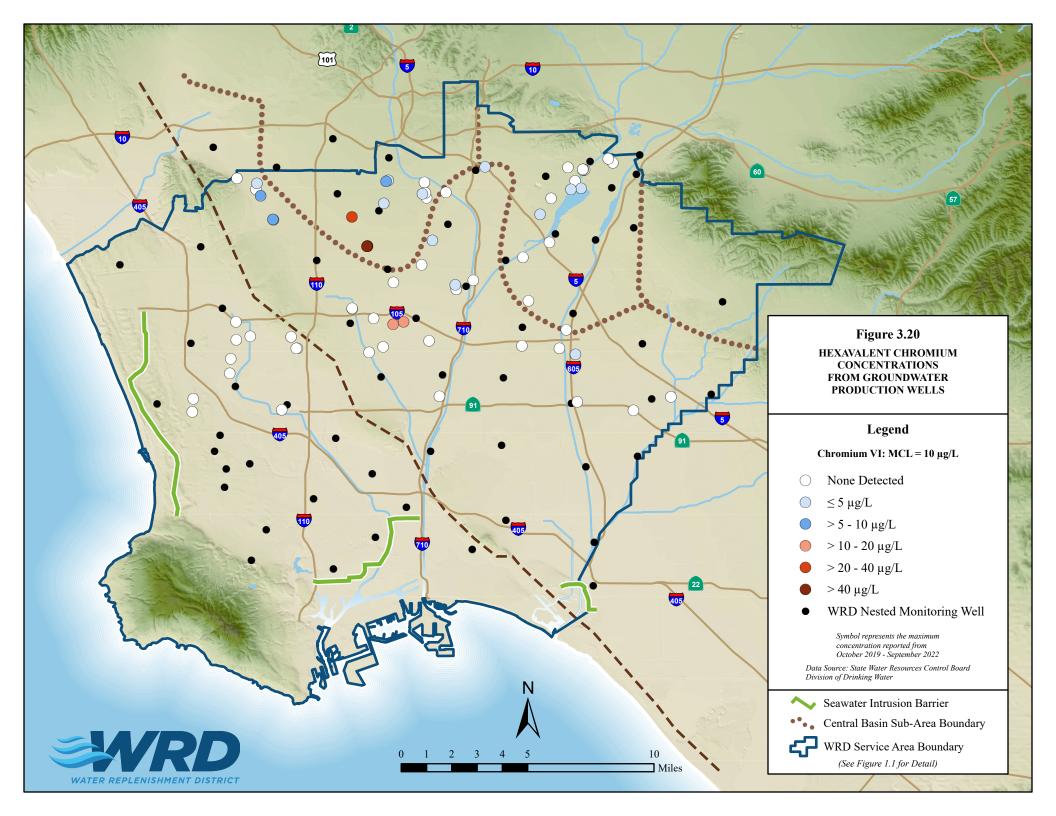


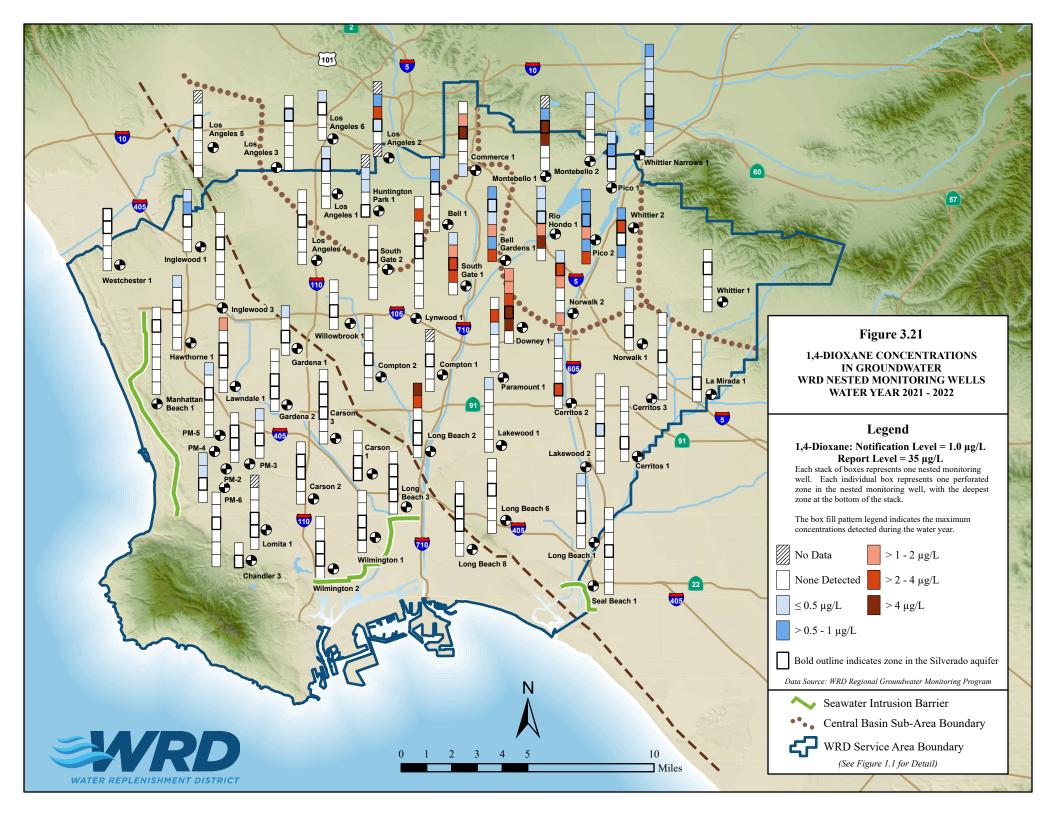


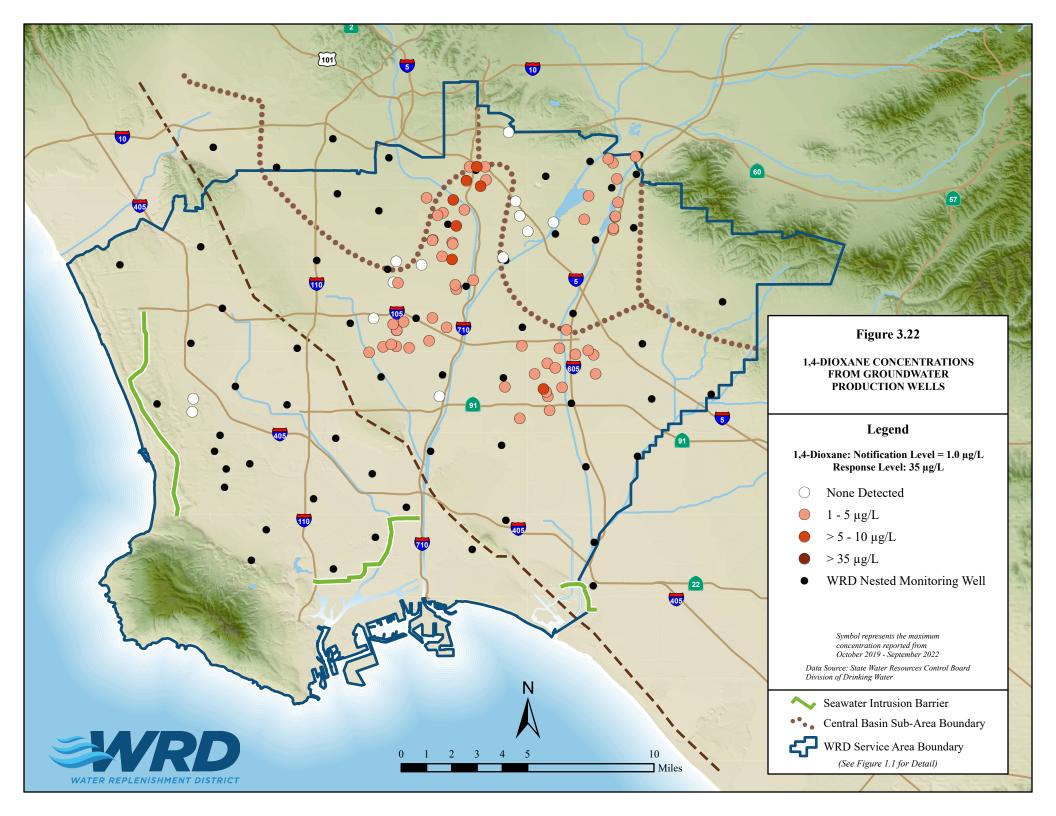


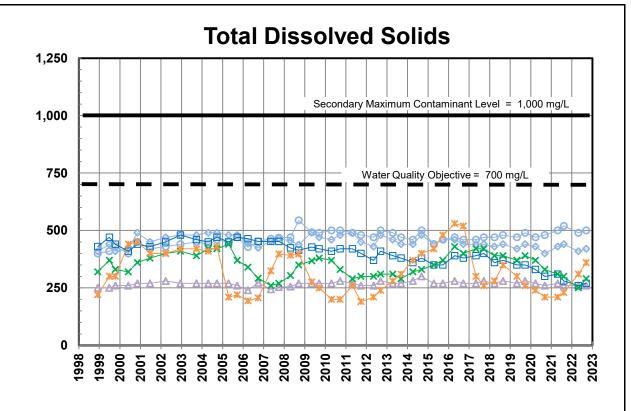


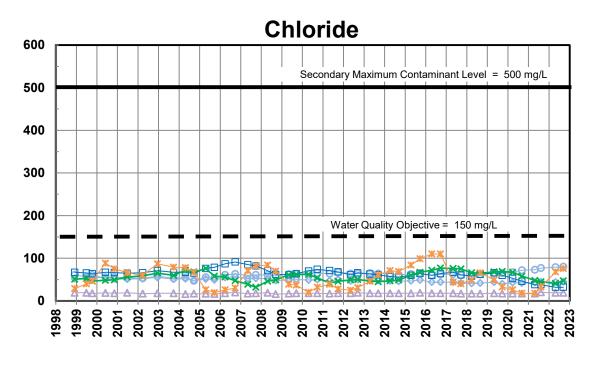




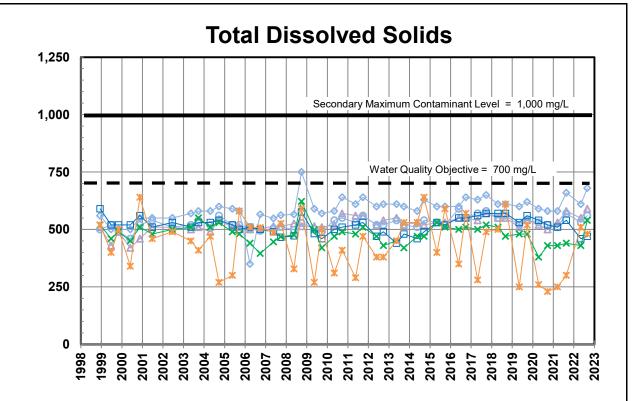


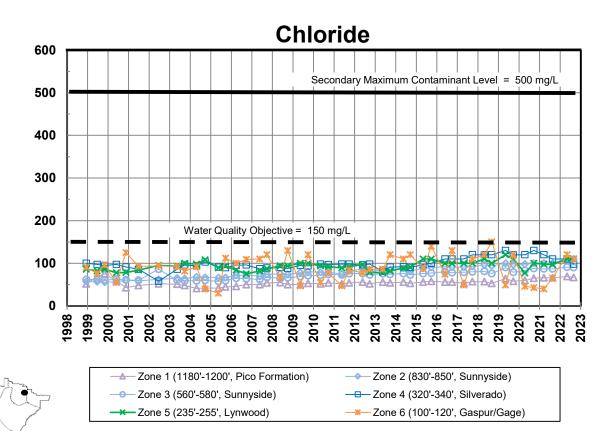




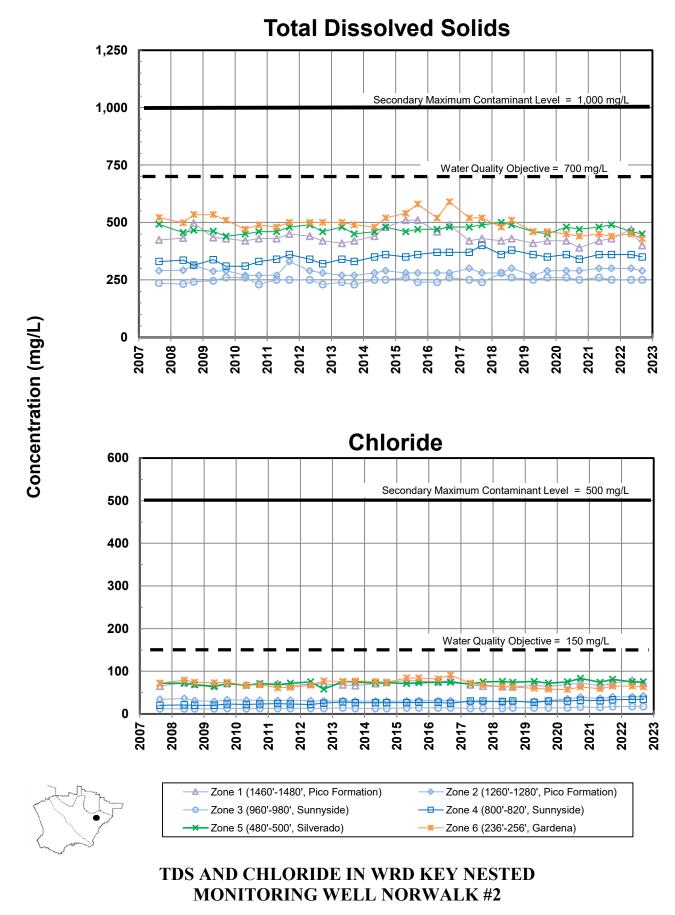


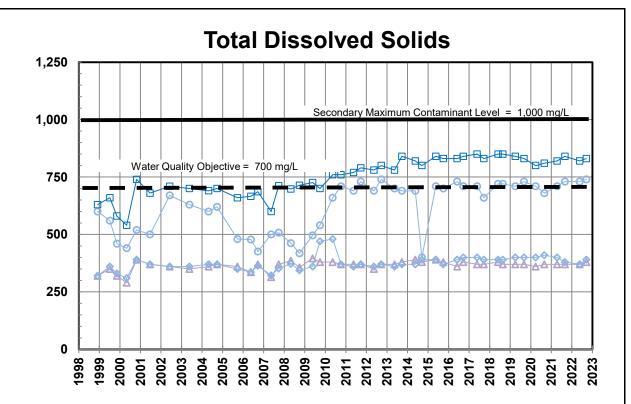
PAGE LEFT INTENTIONALLY BLANK

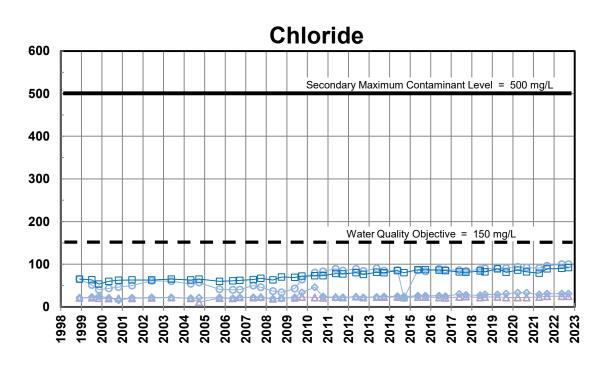

 — Zone 1 (1110'-1130', Pico Formation)
 — Zone 2 (910'-930', Sunnyside)


 — Zone 3 (710'-730', Sunnyside)
 — Zone 4 (430'-450', Silverado)

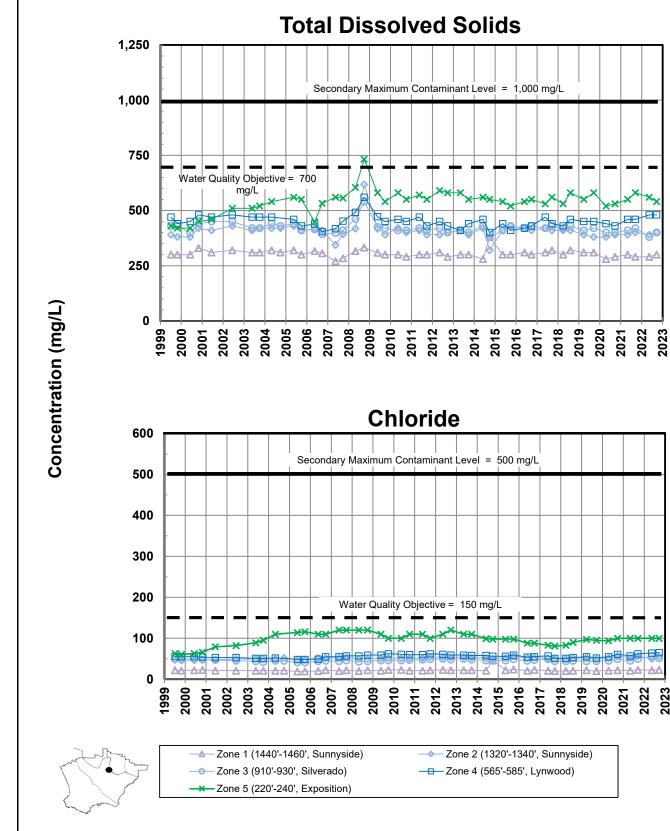
 — Zone 5 (280'-300', Hollydale)
 — Zone 6 (140'-160', Gardena)

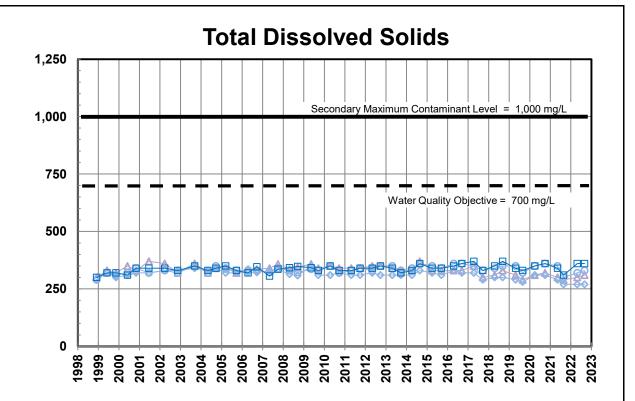

TDS AND CHLORIDE IN WRD KEY NESTED MONITORING WELL RIO HONDO #1

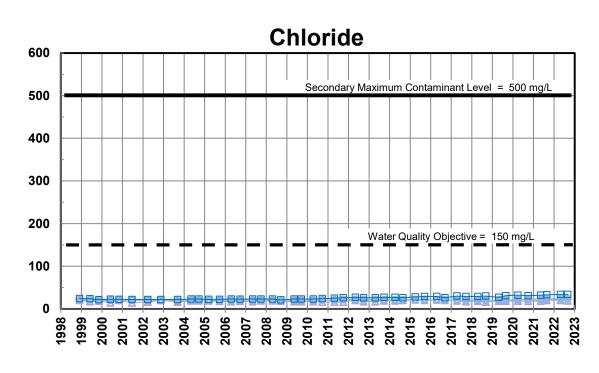




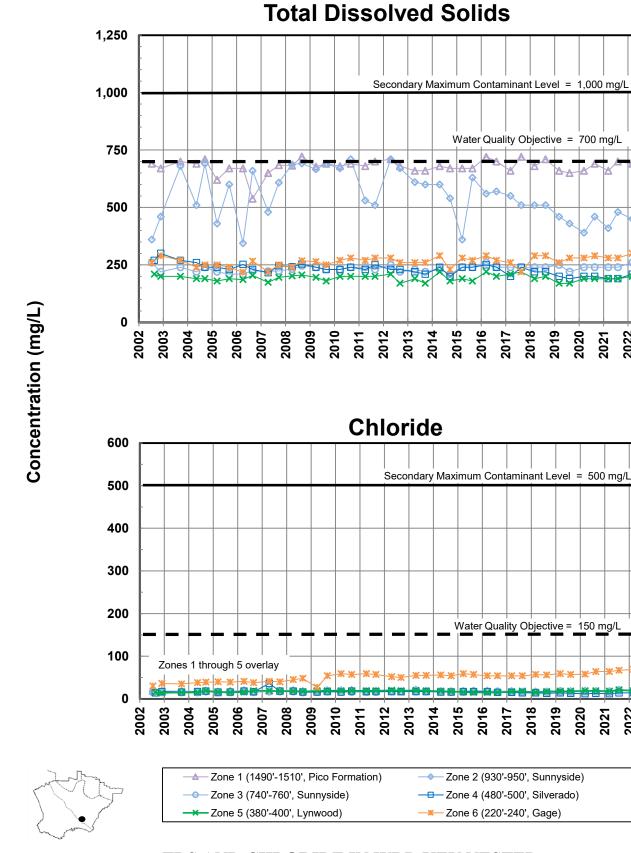
TDS AND CHLORIDE IN WRD KEY NESTED MONITORING WELL PICO #2

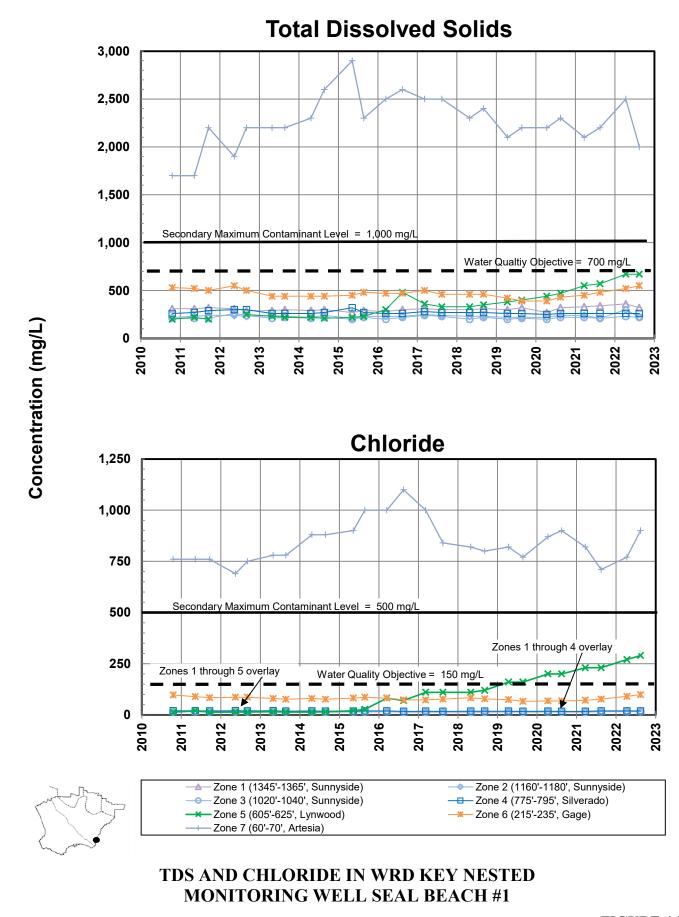



—— Zone 1 (890'-910', Silverado) —— Zone 2 (690'-710', Lynwood)
—— Zone 3 (420'-440', Hollydale) —— Zone 4 (275'-295', Gage)

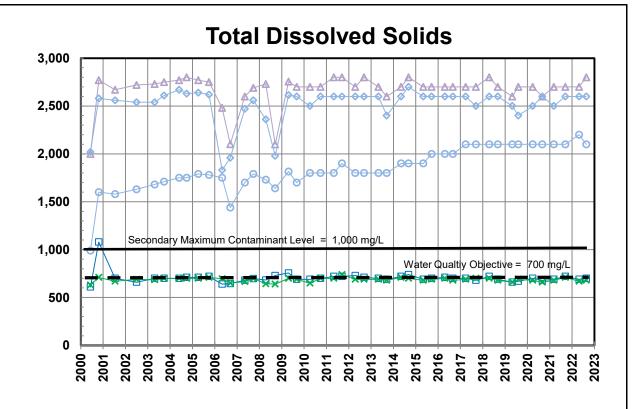

TDS AND CHLORIDE IN WRD KEY NESTED MONITORING WELL HUNTINGTON PARK #1

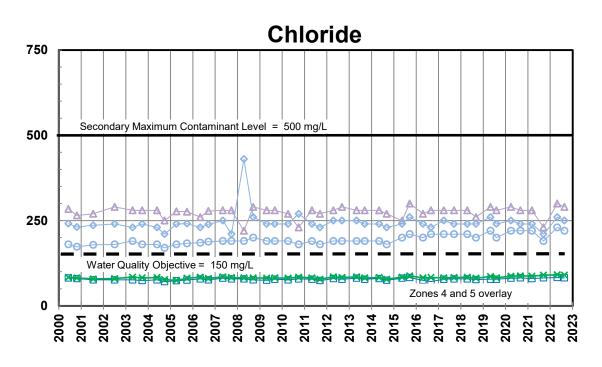
TDS AND CHLORIDE IN WRD KEY NESTED MONITORING WELL SOUTH GATE #1



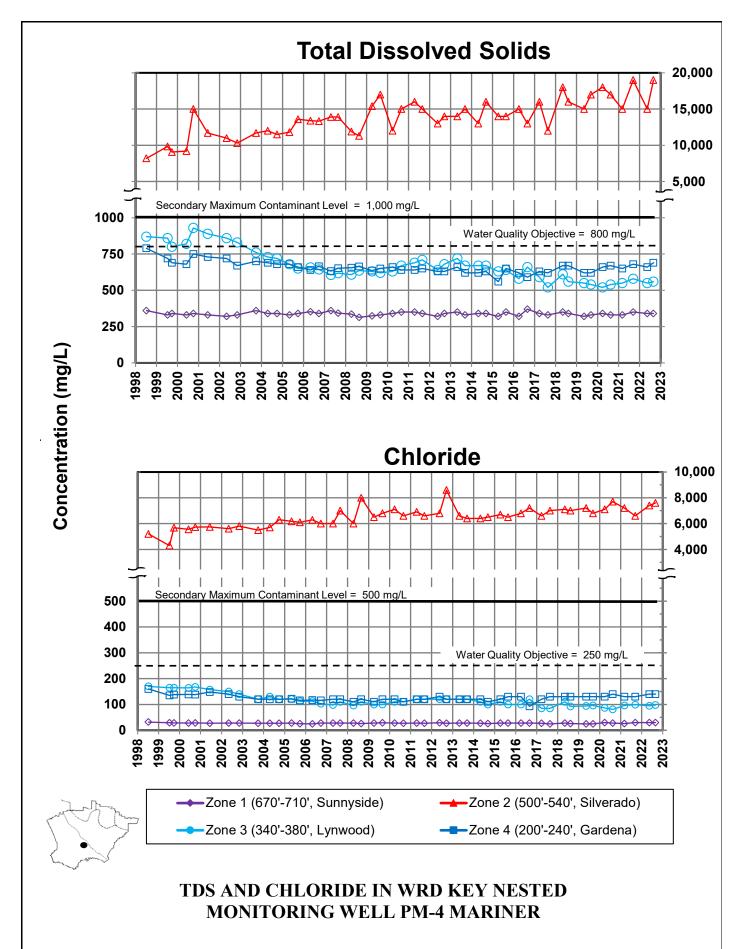


—— Zone 1 (885'-905', Sunnyside) —— Zone 2 (500'-520', Silverado)
—— Zone 3 (360'-380', Lynwood) —— Zone 4 (200'-220', Gage)

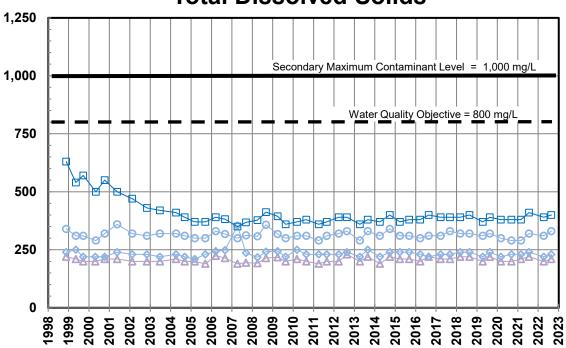

TDS AND CHLORIDE IN WRD KEY NESTED MONITORING WELL WILLOWBROOK #1

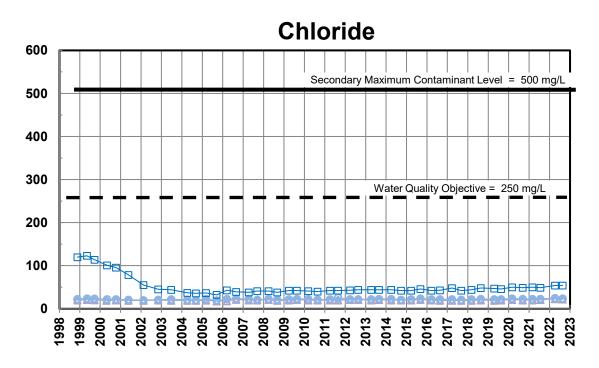


TDS AND CHLORIDE IN WRD KEY NESTED MONITORING WELL LONG BEACH #6

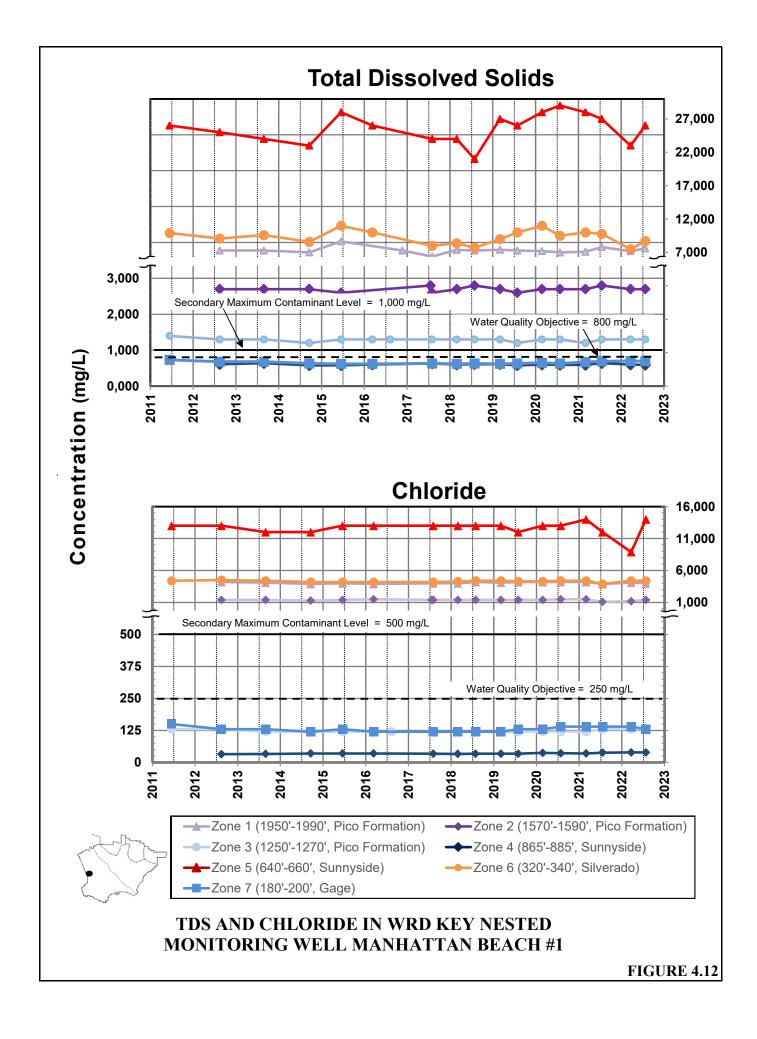


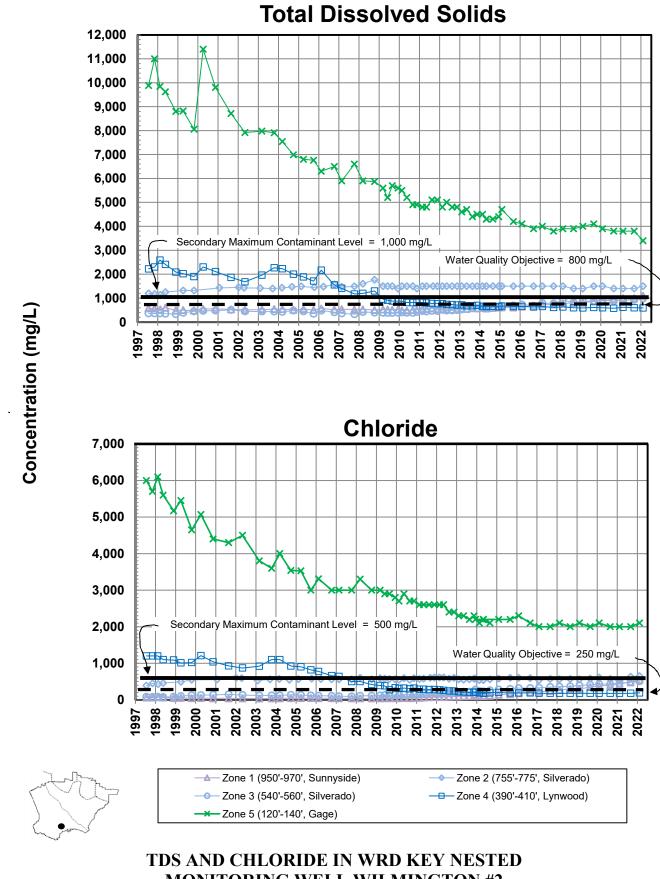
- ____Zone 1 (1180'-1200', Pico Formation)
- --- Zone 3 (770'-790', Sunnyside)
- → Zone 2 (920'-940', Pico Formation)
- —■ Zone 4 (450'-470', Silverado)


TDS AND CHLORIDE IN WRD KEY NESTED MONITORING WELL WHITTIER #1


FIGURE 4.9

Total Dissolved Solids





 — Zone 1 (990'-1010', Silverado)
 — Zone 2 (740'-760', Silverado)

 — Zone 3 (460'-480', Lynwood)
 — Zone 4 (250'-270', Gage)

TDS AND CHLORIDE IN WRD KEY NESTED MONITORING WELL CARSON #1

MONITORING WELL WILMINGTON #2

Mission:

"To provide, protect and preserve safe and sustainable groundwater"

Water Replenishment District 4040 Paramount Boulevard Lakewood, CA 90712 Tel. (562) 275-4300 www.wrd.org